Typed Modular Cloning System ============================ .. toctree:: :maxdepth: 1 System Definition ----------------- .. admonition:: Definition :class: math-definition Given a genetic alphabet :math:`\langle \Sigma, \sim \rangle`, a Typed Modular Cloning System :math:`S` is defined as a mathematical sequence .. math:: (M_l,\ V_l,\ \mathcal{M}_l,\ \mathcal{V}_l,\ e_l)_ {\ l\ \ge -1} where: * :math:`(M_l, V_l, e_l)_{l \ge -1}` is a standard Modular Cloning System * :math:`\mathcal{M}_l \subseteq \mathcal{P}(M_l) \to \mathcal{P}(M_l)` is the set of *module types* of level :math:`l` * :math:`\mathcal{V}_l \subseteq \mathcal{P}(V_l) \to \mathcal{P}(V_l)` is the set of *vector types* of level :math:`l` Types ----- .. admonition:: Definition :class: math-definition :math:`\forall l \ge -1`, we define types using their signatures (*i.e.* the sets of upstream and downstream overhangs of elements using this type): .. math:: \begin{array}{ll} \forall t \in \mathcal{M}_l,& \begin{cases} Up(t) &= \bigcup_{m \in t(M_l)} \{ up(m) \} \\ Down(t) &= \bigcup_{m \in t(M_l)} \{ down(m) \} \end{cases} \\ \forall t \in \mathcal{V}_l,& \begin{cases} Up(t) &= \bigcup_{v \in t(V_l)} \{ up(v) \} \\ Down(t) &= \bigcup_{v \in t(V_l)} \{ down(v) \} \end{cases} \end{array} .. admonition:: Corollary :class: math-property :math:`\forall l \ge -1`, .. math:: \begin{array}{lll} \forall t \in \mathcal{M}_l,&\ t(M_l) &= \{ m \in M_l\ |\ up(m) \in Up(t),\ down(m) \in Down(t) \} \\ \forall t \in \mathcal{V}_l,&\ t(V_l) &= \{ v \in V_l\ |\ up(v) \in Up(t),\ down(v) \in Down(t) \} \end{array} .. admonition:: Property: *Structural equivalence of module types* :class: math-property Given a valid (*resp.* unambiguous) (*resp.* complete) assembly .. math:: m_1 + \dots + m_k + v \xrightarrow{e_l} A \subset (\Sigma^\star \cup \Sigma^{(c)}) then if there exist :math:`t \in \mathcal{M}_l` such that .. math:: \begin{cases} \lvert Up(t) \rvert = \lvert Down(t) \rvert = 1 \\ m_1 \in t(M_l) \end{cases} then :math:`\forall m_1\prime \in t(M_l)`, .. math:: m_1\prime + \dots + m_k + v \xrightarrow{e_l} A \subset (\Sigma^\star \cup \Sigma^{(c)}) is valid (*resp.* unambiguous) (*resp.* complete).