
moclo Documentation
Release 0.4.7

Martin Larralde

May 03, 2022

CONTENTS

1 Concepts and Definitions 3

2 Library 15

3 Kits 37

4 Indices and tables 69

Python Module Index 71

Index 73

i

ii

moclo Documentation, Release 0.4.7

The MoClo system is a standard for molecular cloning that relies on the Golden Gate Assembly technique.

CONTENTS 1

https://github.com/althonos/moclo
https://pypi.python.org/pypi/moclo
https://travis-ci.org/althonos/moclo/branches
https://moclo.readthedocs.io/
https://codecov.io/gh/althonos/moclo
https://www.codacy.com/app/althonos/moclo
https://pypi.python.org/pypi/moclo
https://choosealicense.com/licenses/mit/

moclo Documentation, Release 0.4.7

2 CONTENTS

CHAPTER

ONE

CONCEPTS AND DEFINITIONS

1.1 Concepts

1.1.1 Introduction

The MoClo standard was first presented in the Weber et al., 201121364738 paper, as an attempt to standardize the process
of assembling complex DNA molecules from smaller genetic elements. It is inspired by two previous standards:

• NOMAD8855278, which proposed generic notions of modules and vectors, as well as assembly using Type IIS
enzymes. Modules can be combined in any order, but are clone sequentially one module at a time.

• BioBrick18410688, which defines parts with a stable structure: assembling two parts together always gives a part
with the same flanking restriction sites.

The MoClo standard enhances both of these assembly standards by relying on the Golden Gate Assembly, which
allows single-step assembly of an arbitrary number of modules into a vector. Furthermore, MoClo parts are flanked
by stereotypical overhangs, enforcing a particular assembly order, therefore allowing only the desired contruct to be
obtained.

1.1.2 Type II-S enzymes

Restriction enzymes are enzymes that are able to cut DNA at or near specific recognition sites. Among those enzymes,
Type IIS enzymes cut DNA out of the sequence they recognize, at a defined distance. The cut can produce cohesive ends,
which can then recombine with other sequences sharing the complementary cohesive ends, or blunt ends, which cannot
recombine. The design of the cohesive ends is of great importance when using Type II-S enzymes to do molecular
cloning.

21364738 Weber, Ernst, Carola Engler, Ramona Gruetzner, Stefan Werner, and Sylvestre Marillonnet. ‘A Modular Cloning System for Standardized
Assembly of Multigene Constructs’. PLOS ONE 6, no. 2 (18 February 2011): e16765. doi:10.1371/journal.pone.0016765

8855278 Rebatchouk, D, N Daraselia, and J O Narita. ‘NOMAD: A Versatile Strategy for in Vitro DNA Manipulation Applied to Promoter Analysis
and Vector Design.’ Proceedings of the National Academy of Sciences of the United States of America 93, no. 20 (1 October 1996): 10891–96.
pmid:8855278

18410688 Shetty, Reshma P, Drew Endy, and Thomas F Knight. ‘Engineering BioBrick Vectors from BioBrick Parts’. Journal of Biological Engineering
2 (14 April 2008): 5. doi:10.1186/1754-1611-2-5

3

https://doi.org/10.1371/journal.pone.0016765
https://www.ncbi.nlm.nih.gov/pubmed/8855278
https://doi.org/10.1186/1754-1611-2-5

moclo Documentation, Release 0.4.7

1.1.3 Golden Gate Assembly

The Golden Gate Assembly relies on Type II-S enzymes to assemble several DNA sequences. The sequences are first
cut by restriction enzymes, and then assembled together using a T4 DNA ligase. These two steps can be repeated in
a single reaction tube using a thermo cycler, as the two enzymes typically do not work at the same temperature. As
standard Type II-S enzymes, such as BsaI or BsmBI, create a 4-base-long cohesive end when cutting the DNA, there
can be as much as 256 fragments combined together in a deterministic way in a single assembly, although in vivo the
chemical properties of the nucleotides will most likely prevent assemblies that large to succeed.

Fig. 1: Example GoldenGate assembly of two modules in a vector using BsaI.

1.1.4 The MoClo system

The MoClo system combines the idea of a standard part format from the BioBrick standard, with the Golden Gate
assembly protocol, allowing several modules to be assembled in a vector at the same time.

Hierarchy

MoClo modules and vectors are divided into several levels, describing their structural and transcriptional features:

• Level -1 modules are sequences that are not yet in a standardized backbone, but can be assembled in a dedicated
vector to form a level 0 module. They are most of the time obtained via oligonucelotide synthesis, or PCR.

• Level 0 modules are standardized genetic elements: promoter, 5’ UTR, signal sequence, CDS, terminator.

• Level 1 modules are transcription units, formed by a combination of Level 0 modules, and are able to express
proteins

• Level 2 modules are multigenic units, containing several transcription units, and are able to express many genes
at onces.

Furthermore, the enzyme used during the Golden Gate Assembly depends on the assembly level. Alternating between
the two enzymes makes it possible for an infinite number of genes to be inserted in the same plasmid, although biological
limits are reached in vivo.

Types definition

Although transcription units can be assembled in any possible order in their destination vectors, level 0 modules must
be assembled in a specific order to obtain a functional genetic construct. In order to enforce the assembly order, parts
are flanked by fusion sites with standard sequences, which are unique to the type of the part. A valid level 1 module is
obtained by assembling a part of each type into the destination vector.

Assembly markers

Once the Golden Gate Assembly is finished, the obtained constructs can be amplified using a bacterial host. After
transformation, bacteria are selected using two different factors:

• An antibiotic for which a resistance cassette is only availble on the vector, but not on any module: this allows
selecting all the bacterias that received the vector plasmid

• A marker for a dropout reporter gene that can only be found in the vector but not in the final construct (such as
the gfp or lacZ genes).

4 Chapter 1. Concepts and Definitions

https://international.neb.com/products/r0535-bsai#Product%20Information

moclo Documentation, Release 0.4.7

This double screening makes it possible to select only the bacterias that contain the expected construct, discarding the
others, and retrieving the assembled plasmid through a miniprep.

1.1.5 References

1.2 Definitions

Molecular Cloning Molecular cloning is the process of assembling together fragments of DNA to obtain a more
complex molecule, often presenting genetic features of interest. It describes a process, not a technique

GoldenGate GoldenGate is a molecular cloning technique that uses Type IIS restriction enzymes to cut and assemble
DNA sequences into recombinant DNA molecules. It describes a technique

Modular Cloning A Modular Cloning system uses the GoldenGate technique to assemble several genetic modules of
a given level into a vector of the same level. It can also define types, which are modules or vectors with specific
overhangs that are collections of sequences that are functionnally and structuraly equivalent to each other.

MoClo MoClo is originally the name of a modular cloning system published by the Marillonnet Lab which defines a
set of vectors and modules to be used to assemble multigenic expression devices for plants. An extension was
later provided by the same team proposing potentially infinite assemblies multigenic expression devices with
the addition of two levels. Other modular cloning systems, inspired by them, were published under the name of
MoClo (such as MoClo YTK, MoClo CIDAR, MoClo EcloFlex, etc.). In this work, the original toolkit is named
MoClo IG, and MoClo is used as an abbreviation of modular cloning as defined above.

1.3 Descriptive Theory

This section introduces the theory that was developed to support the software implementation of the modular cloning
logic. It introduces mathematical definitions of biological concepts, relying on particular on formal language theory.

1.3.1 Preliminary Definitions

Genetic Alphabet

Definition

A genetic alphabet ⟨Σ,∼⟩ is an algebraic structure on an alphabet Σ with a unary operation ∼ verifying the following
properties:

• ∼: Σ⋆ → Σ⋆ is a bijection

• ∀𝑥 ∈ Σ⋆, |̃︀𝑥| = |𝑥|

• ∀(𝑥, 𝑦) ∈ (Σ⋆)2, ̃︂𝑥 · 𝑦 = ̃︀𝑦 · ̃︀𝑥
Note: To stay consistent with the biology lexicon, we will be referring to a word over a genetic alphabet as a sequence,
only explicitly naming a mathematical sequence when needed to.

Examples

1.2. Definitions 5

https://en.wikipedia.org/wiki/Formal_language

moclo Documentation, Release 0.4.7

• ({𝐴, 𝑇,𝐺,𝐶},∼) is the standard genetic alphabet, with ∼ defined as 𝐴 ·𝐺 = 𝐶 · 𝑇 .

• ({𝐴, 𝑇,𝐺,𝐶, 𝑑5𝑆𝐼𝐶𝑆, 𝑑𝑁𝑎𝑀},∼) is the genetic alphabet using the unnatural base pairs from Malyshev et al.,
Nature 2014, with ∼ defined as ˜𝐴 ·𝐺 · 𝑑5𝐼𝐶𝑆 = 𝑑𝑁𝑎𝑀 · 𝐶 · 𝑇

Circular Sequences

Definition

A circular word over an alphabet Σ is a finite word with no end. It can be noted 𝑤(𝑐), where 𝑤 is a finite word of Σ⋆.

Definition: Cardinality

Given a circular sequence 𝑠(𝑐), the cardinal of 𝑠(𝑐), noted |𝑠(𝑐)|, is defined as:

|𝑠(𝑐)| = |𝑠|

Definition: Equality

Given two sequences 𝑎(𝑐) and 𝑏(𝑐) with

𝑎 = 𝑎0 · 𝑎1 · . . . · 𝑎𝑚 ∈ Σ(𝑚), 𝑚 ∈ N
𝑏 = 𝑏0 · 𝑏1 · . . . · 𝑏𝑛 ∈ Σ(𝑛), 𝑛 ∈ N

let the = relation be defined as:

𝑎(𝑐) = 𝑏(𝑐) ⇐⇒ ∃𝑘 ∈ N, 𝑎 = 𝜎𝑘(𝑏)

where 𝜎 is the circular shift defined as:
∀𝑢 = 𝑢1 · 𝑢2 · . . . · 𝑢𝑘 ∈ Σ𝑘,

𝜎(𝑢1 · 𝑢2 · . . . · 𝑢𝑘) = 𝑢𝑘 · 𝑢1 · 𝑢2 · . . . · 𝑢𝑘−1

Property

= is a relation of equivalence over Σ(𝑐)

Demonstration

Given the set of circular sequences Σ(𝑐) using an alphabet Σ:

• Reflexivity:

𝑠(𝑐) ∈ Σ(𝑐) =⇒ 𝑠 = 𝐼𝑑(𝑠) = 𝜎0(𝑠) =⇒ 𝑠(𝑐) = 𝑠(𝑐)

• Symetry: ∀𝑠(𝑐)1 , 𝑠
(𝑐)
2 ∈ Σ(𝑐) × Σ(𝑐):

𝑠
(𝑐)
1 = 𝑠

(𝑐)
2 ⇐⇒ ∃𝑘 ∈ N, 𝑠1 = 𝜎𝑘(𝑠2)

⇐⇒ ∃𝑘 ∈ N, 𝑠2 = 𝜎−𝑘(𝑠1)
⇐⇒ ∃𝑘 ∈ N, 𝑠2 = 𝜎|𝑠1|−𝑘(𝑠1)

⇐⇒ 𝑠
(𝑐)
2 = 𝑠

(𝑐)
1

6 Chapter 1. Concepts and Definitions

https://www.nature.com/articles/nature13314
https://www.nature.com/articles/nature13314

moclo Documentation, Release 0.4.7

• Transitivity: ∀𝑠1, 𝑠2, 𝑠3 ∈ Σ(𝑐) × Σ(𝑐) × Σ(𝑐){︃
𝑠
(𝑐)
1 = 𝑠

(𝑐)
2

𝑠
(𝑐)
2 = 𝑠

(𝑐)
3

=⇒

{︃
∃𝑘1 ∈ N, 𝑠1 = 𝜎𝑘1(𝑠2)

∃𝑘2 ∈ N, 𝑠2 = 𝜎𝑘2(𝑠3)

=⇒ ∃𝑘1, 𝑘2 ∈ N2, 𝑠1 = 𝜎𝑘1 ∘ 𝜎𝑘2(𝑠3)
=⇒ ∃𝑘1, 𝑘2 ∈ N2, 𝑠1 = 𝜎𝑘1+𝑘2(𝑠3)

=⇒ 𝑠
(𝑐)
1 = 𝑠

(𝑐)
3

Definition: Automaton acception

Given a finite automaton 𝐴 over an alphabet Σ, and 𝑢(𝑐) a sequence of Σ(𝑐), 𝐴 accepts 𝑢(𝑐) iff there exist a sequence
𝑣 of Σ⋆ such that:

• 𝑣(𝑐) = 𝑢(𝑐)

• 𝐴 accepts 𝑣

Restriction Enzymes

Definition

Given a genetic alphabet ⟨Σ,∼⟩, a restriction enzyme 𝑒 can be defined as a tuple (𝑆, 𝑛, 𝑘) where:

• 𝑆 ⊆ Σ⋆ is the finite set of recognition sites that 𝑒 binds to

• ∀(𝑠, 𝑠′) ∈ 𝑆2, |𝑠| = |𝑠′|

• 𝑛 ∈ Z is the cutting offset between the last nucleotides of the site and the first nucleotide of the restriction cut

• 𝑘 ∈ Z is the overhang length:

– 𝑘 = 0 if the enzyme produces blunt cuts

– 𝑘 > 0 if the enzyme produces 5′ overhangs

– 𝑘 < 0 if the enzyme produce 3′ overhangs

• ∀(𝑠, 𝑠′) ∈ 𝑆2, |𝑠| = |𝑠′|

• 𝑛 ≥ −|𝑠|, 𝑠 ∈ 𝑆

Note: This definition only covers single-cut restriction enzymes found in vivo, but we don’t need to cover the case of
double-cut restriction enzymes since they are not used in modular cloning.

Definition: Enzyme types

A restriction enzyme (𝑆, 𝑛, 𝑘) is:

• a blunt cutter is 𝑘 = 0

• an asymmetric cutter if 𝑘 ̸= 0

• a Type IIS enzyme if:

– 𝑛 ≥ 0

1.3. Descriptive Theory 7

moclo Documentation, Release 0.4.7

– ∀𝑠 ∈ 𝑆, 𝑠 ̸= 𝑠

Golden Gate Assembly

Definition

An assembly is a function of 𝒫(Σ⋆∪Σ(𝑐))×𝒫(𝐸) to 𝒫(Σ⋆∪Σ(𝑐)), which to a set of distinct sequences {𝑑1, . . . , 𝑑𝑚}
and a set of restriction enzymes {𝑒1, . . . , 𝑒𝑛} associates the set of digested/ligated sequences 𝐴 = {𝑎1, . . . 𝑎𝑘}.

The notation for an assembly is:

𝑑1 + · · · + 𝑑𝑚
𝑒1,...,𝑒𝑛−−−−−−−−−→ 𝑎1 + · · · + 𝑎𝑘

1.3.2 Standard Modular Cloning System

System Definition

Definition

Given a genetic alphabet ⟨Σ,∼⟩, a Modular Cloning System 𝑆 is defined as a mathematical sequence

(𝑀𝑙, 𝑉𝑙, 𝑒𝑙) 𝑙 ≥−1

where:

• 𝑀𝑙 ⊆ Σ⋆ ∪ Σ(𝑐) is the set of modules of level 𝑙

• 𝑉𝑙 ⊆ Σ(𝑐) is the set of vectors of level 𝑙

• 𝑒𝑙 ⊆ 𝐸 is the finite, non-empty set of asymmetric, Type IIS restriction enzymes of level 𝑙

Definition: 𝑘-cyclicity

A Modular Cloning System (𝑀𝑙, 𝑉𝑙, 𝑒𝑙)𝑙≥−1 is said to be 𝑘-cyclic after a level 𝜆 if:

∃𝑘 ∈ 𝑁⋆,
∀𝑙 ≥ 𝜆, ⎧⎪⎨⎪⎩

𝑀𝑙+𝑘 ⊆ 𝑀𝑙

𝑉𝑙+𝑘 ⊆ 𝑉𝑙

𝑒𝑙+𝑘 ⊆ 𝑒𝑙

Definition: 𝜆-limit

A Modular Cloning System (𝑀𝑙, 𝑉𝑙, 𝑒𝑙)𝑙≥−1 is said to be 𝜆-limited if:

∀𝑙 ≥ 𝜆,𝑀𝑙 = ∅, 𝑉𝑙 = ∅, 𝑒𝑙 = ∅

8 Chapter 1. Concepts and Definitions

moclo Documentation, Release 0.4.7

Modules

Definition

For a given level 𝑙, 𝑀𝑙 is defined as the set of modules 𝑚 ∈ Σ⋆ ∪ Σ(𝑐) for which:

∃!(𝑆, 𝑛, 𝑘) ∈ 𝑒𝑙,
∃!(𝑆′, 𝑛′, 𝑘′) ∈ 𝑒𝑙,
∃!(𝑠, 𝑠′) ∈ 𝑆 × 𝑆′,
∃!(𝑥, 𝑦, 𝑜5, 𝑜3) ∈ (Σ⋆)4,

∃!𝑡 ∈ Σ⋆,

{︂
∃!𝑏 ∈ Σ⋆, 𝑚 = (𝑠 · 𝑥 · 𝑜5 · 𝑡 · 𝑜3 · 𝑦 · ̃︀𝑠′ · 𝑏)(𝑐), if 𝑚 ∈ Σ(𝑐)

∃!𝑢, 𝑣 ∈ (Σ⋆)2, 𝑚 = 𝑢 · 𝑠 · 𝑥 · 𝑜5 · 𝑡 · 𝑜3 · 𝑦 · ̃︀𝑠′ · 𝑣, if 𝑚 ̸∈ Σ(𝑐)

with:

• |𝑥| = 𝑛

• |𝑦| = 𝑛′

• |𝑜5| = 𝑎𝑏𝑠(𝑘)

• |𝑜3| = 𝑎𝑏𝑠(𝑘′)

Note: This decomposition is called the canonic module decomposition, where:

• 𝑡 is the target sequence of the module 𝑚

• 𝑏 is the backbone of the module 𝑚 (if 𝑚 is circular)

• 𝑢 and 𝑣 are called the prefix and suffix of the module 𝑚 (if 𝑚 is not circular)

• 𝑜5 and 𝑜3 are the upstream and downstream overhangs respectively.

Property

∀⟨Σ,∼⟩, ∀𝑙 ≥ −1, ∀𝑒𝑙 ⊂ 𝐸:

𝑀𝑙 is a rational language

Demonstration

Let there be a genetic alphabet ⟨Σ,∼⟩ and a Modular Cloning System (𝑀𝑙, 𝑉𝑙, 𝑒𝑙)𝑙≥−1 over it.

∀𝑙 ≥ −1, the regular expression:⋃︀
(𝑆, 𝑛, 𝑘) ∈ 𝑒𝑙
(𝑆′, 𝑛′, 𝑘′) ∈ 𝑒𝑙

Σ⋆ · 𝑆 · Σ𝑛 · Σ𝑎𝑏𝑠(𝑘) · Σ⋆ · (𝑆|𝑆′) · Σ⋆ · Σ𝑎𝑏𝑠(𝑘′) · Σ𝑛′ · ̃︁𝑆′ · Σ⋆

where:

• ⋆ is the Kleene star.

• ̃︀𝑆 = {̃︀𝑠, 𝑠 ∈ 𝑆} (reverse complementation operator).

• 𝑆 = {𝑤 ∈ Σ⋆, 𝑤 ̸∈ 𝑆} (complement operator).

1.3. Descriptive Theory 9

https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Complement_(set_theory)

moclo Documentation, Release 0.4.7

• 𝑆|𝑆′ = 𝑆 ∪ 𝑆′ (alternation operator).

matches a sequence 𝑚 ∈ Σ⋆ ∪ Σ(𝑐) if and only if 𝑚 ∈ 𝑀𝑙.

𝑀𝑙 is regular, so given Kleene’s Theorem, 𝑀𝑙 is rational.

Vectors

Definition

For a given level 𝑙, 𝑉𝑙 is defined as the set of vectors 𝑣 ∈ Σ(𝑐) for which:

∃!(𝑆, 𝑛, 𝑘) ∈ 𝑒𝑙,
∃!(𝑆′, 𝑛′, 𝑘′) ∈ 𝑒𝑙,
∃!(𝑠, 𝑠′) ∈ 𝑆 × 𝑆′,
∃!(𝑥, 𝑦, 𝑜5, 𝑜3) ∈ (Σ⋆)4,

∃!(𝑏, 𝑝) ∈ (Σ⋆)2,∃!𝑏 ∈ Σ⋆, 𝑣 = (𝑜3 · 𝑏 · 𝑜5 · 𝑦 · ̃︀𝑠 · 𝑝 · 𝑠′ · 𝑥)(𝑐)

with:

• |𝑥| = 𝑛

• |𝑦| = 𝑛′

• |𝑜5| = 𝑎𝑏𝑠(𝑘)

• |𝑜3| = 𝑎𝑏𝑠(𝑘′)

• 𝑜3 ̸= 𝑜5

Note: This decomposition is called the canonic vector decomposition, where:

• 𝑝 is the placeholder sequence of the vector 𝑣

• 𝑏 is the backbone of the vector 𝑣

• 𝑜3 and 𝑜5 are the upstream and downstream overhangs respectively.

Overhangs

By definition, every valid level 𝑙 module and vector only have a single canonic decomposition where they have unique
𝑜5 and 𝑜3 overhangs. As such, let the function 𝑢𝑝 (resp. 𝑑𝑜𝑤𝑛) be defined as the function which:

• to a module 𝑚 associates the word 𝑜5 (resp. 𝑜3) from its canonic module decomposition

• to a vector 𝑣 associates the word 𝑜3 (resp. 𝑜5) from its canonic vector decomposition.

10 Chapter 1. Concepts and Definitions

https://en.wikipedia.org/wiki/Alternation_(formal_language_theory)

moclo Documentation, Release 0.4.7

Standard Assembly

Definition: Standard MoClo Assembly

Given an assembly of level 𝑙, where 𝑚1, . . . ,𝑚𝑘 ∈ 𝑀𝑘
𝑙 , 𝑣 ∈ 𝑉𝑙:

𝑎 : 𝑚1 + · · · + 𝑚𝑘
𝑒𝑙−−−−−→ 𝐴 ⊂ (Σ⋆ ∪ Σ(𝑐))

and the partial order 𝑙𝑒 over 𝑆 = {𝑚1, . . . ,𝑚𝑘} defined as:

∀𝑥, 𝑦 ∈ 𝑆2,

𝑥 ≤ 𝑦 ⇐⇒

⎧⎪⎨⎪⎩
𝑥 = 𝑦

𝑑𝑜𝑤𝑛(𝑥) = 𝑢𝑝(𝑦) if 𝑥 ̸= 𝑦

∃𝑧 ∈ 𝑆∖{𝑥, 𝑦}, 𝑑𝑜𝑤𝑛(𝑥) = 𝑢𝑝(𝑧), 𝑧 ≤ 𝑦 if 𝑥 ̸= 𝑦 and 𝑑𝑜𝑤𝑛(𝑥) ̸= 𝑢𝑝(𝑦)

then a chain ⟨𝑆′,≤⟩ ⊂ ⟨𝑆,≤⟩ is an insert if:{︃
𝑣 ≤ 𝑚𝑖𝑛(𝑆′)

𝑚𝑎𝑥(𝑆′) ≤ 𝑣
⇐⇒

{︃
𝑑𝑜𝑤𝑛(𝑣) = 𝑢𝑝(𝑚𝑖𝑛(𝑆′))

𝑢𝑝(𝑣) = 𝑑𝑜𝑤𝑛(𝑚𝑎𝑥(𝑆′))

𝑎 is:

• invalid if ⟨𝑆,≤⟩ is an antichain or ⟨𝑆,≥⟩ has no insert.

• valid if ⟨𝑆,≤⟩ has at least one insert.

• ambiguous if ⟨𝑆,≤⟩ has more than one insert.

• unambiguous if ⟨𝑆,≤⟩ has exactly one insert.

• complete if ⟨𝑆,≤⟩ is an insert.

Corollary

If an assembly 𝑎 is complete, then there exist a permutation 𝜋 of [[1, 𝑘]] such that:

𝑚𝜋(1) ≤ 𝑚𝜋(2) ≤ · · · ≤ 𝑚𝜋(𝑘−1) ≤ 𝑚𝜋(𝑘)

and:

𝑢𝑝(𝑚𝜋(1)) = 𝑑𝑜𝑤𝑛(𝑣)
𝑑𝑜𝑤𝑛(𝑚𝜋(𝑘)) = 𝑢𝑝(𝑣)

Property: Uniqueness of the cohesive ends

If an assembly

𝑚1 + · · · + 𝑚𝑘
𝑒𝑙−−−−−→ 𝐴 ⊂ (Σ⋆ ∪ Σ(𝑐))

is unambiguous and complete, then ∀𝑖 ∈ [[1, 𝑘]],⎧⎨⎩ 𝑢𝑝(𝑚𝑖) ̸= 𝑑𝑜𝑤𝑛(𝑚𝑖)
𝑢𝑝(𝑚𝑖) ̸= 𝑢𝑝(𝑚𝑗), 𝑗 ∈ [[1, 𝑘]]∖{𝑖}
𝑑𝑜𝑤𝑛(𝑚𝑖) ̸= 𝑑𝑜𝑤𝑛(𝑚𝑗), 𝑗 ∈ [[1, 𝑘]]∖{𝑖}

1.3. Descriptive Theory 11

moclo Documentation, Release 0.4.7

Demonstration

Let there be an unambiguous complete assembly

𝑎 : 𝑚1 + · · · + 𝑚𝑘
𝑒𝑙−−−−−→ 𝐴

• 𝑢𝑝(𝑚𝑖) ̸= 𝑑𝑜𝑤𝑛(𝑚𝑖)

Let’s suppose that ∃𝑖 ∈ [[1, 𝑘]] such that

𝑢𝑝(𝑚𝑖) = 𝑑𝑜𝑤𝑛(𝑚𝑖)

then ⟨{𝑚1, . . . ,𝑚𝑘}∖{𝑚𝑖},≤⟩ is also an insert, which cannot be since 𝑎 is complete.

• 𝑢𝑝(𝑚𝑖) ̸= 𝑢𝑝(𝑚𝑗)

Let’s suppose that ∃(𝑖, 𝑗) ∈ [[1, 𝑘]]2 such that

𝑢𝑝(𝑚𝑖) = 𝑢𝑝(𝑚𝑗)

Since the 𝑎 is complete, there exists 𝑝𝑖 such that

𝑚𝜋(1) ≤ 𝑚𝜋(2) ≤ · · · ≤ 𝑚𝜋(𝑘−1) ≤ 𝑚𝜋(𝑘)

and since 𝑎 is unambiguous, ⟨{𝑚1, . . . ,𝑚𝑘},≤⟩ is the only insert.

• 𝑑𝑜𝑤𝑛(𝑚𝑖) ̸= 𝑑𝑜𝑤𝑛(𝑚𝑗)

TODO

Property: Uniqueness of the assembled plasmid

If an assembly

𝑚1 + · · · + 𝑚𝑘
𝑒𝑙−−−−−→ 𝐴 ⊂ (Σ⋆ ∪ Σ(𝑐))

is unambiguous, then

𝐴 ∩ Σ(𝑐) = {𝑝}

with

𝑝 =
(︀
𝑢𝑝(𝑣) · 𝑏 · 𝑢𝑝(𝑚𝜋(1)) · 𝑡𝜋(1) · . . . · 𝑢𝑝(𝑚𝜋(𝑛)) · 𝑡𝜋(𝑛)

)︀(𝑐)
(𝑛 ≤ 𝑘, 𝑛 = 𝑘 if 𝑎 is complete).

Demonstration

TODO

12 Chapter 1. Concepts and Definitions

moclo Documentation, Release 0.4.7

1.3.3 Typed Modular Cloning System

System Definition

Definition

Given a genetic alphabet ⟨Σ,∼⟩, a Typed Modular Cloning System 𝑆 is defined as a mathematical sequence

(𝑀𝑙, 𝑉𝑙, ℳ𝑙, 𝒱𝑙, 𝑒𝑙) 𝑙 ≥−1

where:

• (𝑀𝑙, 𝑉𝑙, 𝑒𝑙)𝑙≥−1 is a standard Modular Cloning System

• ℳ𝑙 ⊆ 𝒫(𝑀𝑙) → 𝒫(𝑀𝑙) is the set of module types of level 𝑙

• 𝒱𝑙 ⊆ 𝒫(𝑉𝑙) → 𝒫(𝑉𝑙) is the set of vector types of level 𝑙

Types

Definition

∀𝑙 ≥ −1, we define types using their signatures (i.e. the sets of upstream and downstream overhangs of elements using
this type):

∀𝑡 ∈ ℳ𝑙,

{︃
𝑈𝑝(𝑡) =

⋃︀
𝑚∈𝑡(𝑀𝑙)

{𝑢𝑝(𝑚)}
𝐷𝑜𝑤𝑛(𝑡) =

⋃︀
𝑚∈𝑡(𝑀𝑙)

{𝑑𝑜𝑤𝑛(𝑚)}

∀𝑡 ∈ 𝒱𝑙,

{︃
𝑈𝑝(𝑡) =

⋃︀
𝑣∈𝑡(𝑉𝑙)

{𝑢𝑝(𝑣)}
𝐷𝑜𝑤𝑛(𝑡) =

⋃︀
𝑣∈𝑡(𝑉𝑙)

{𝑑𝑜𝑤𝑛(𝑣)}

Corollary

∀𝑙 ≥ −1,
∀𝑡 ∈ ℳ𝑙, 𝑡(𝑀𝑙) = {𝑚 ∈ 𝑀𝑙 | 𝑢𝑝(𝑚) ∈ 𝑈𝑝(𝑡), 𝑑𝑜𝑤𝑛(𝑚) ∈ 𝐷𝑜𝑤𝑛(𝑡)}
∀𝑡 ∈ 𝒱𝑙, 𝑡(𝑉𝑙) = {𝑣 ∈ 𝑉𝑙 | 𝑢𝑝(𝑣) ∈ 𝑈𝑝(𝑡), 𝑑𝑜𝑤𝑛(𝑣) ∈ 𝐷𝑜𝑤𝑛(𝑡)}

Property: Structural equivalence of module types

Given a valid (resp. unambiguous) (resp. complete) assembly

𝑚1 + · · · + 𝑚𝑘 + 𝑣
𝑒𝑙−→ 𝐴 ⊂ (Σ⋆ ∪ Σ(𝑐))

then if there exist 𝑡 ∈ ℳ𝑙 such that {︃
|𝑈𝑝(𝑡)| = |𝐷𝑜𝑤𝑛(𝑡)| = 1

𝑚1 ∈ 𝑡(𝑀𝑙)

then ∀𝑚1′ ∈ 𝑡(𝑀𝑙),

𝑚1′ + · · · + 𝑚𝑘 + 𝑣
𝑒𝑙−→ 𝐴 ⊂ (Σ⋆ ∪ Σ(𝑐))

is valid (resp. unambiguous) (resp. complete).

1.3. Descriptive Theory 13

moclo Documentation, Release 0.4.7

14 Chapter 1. Concepts and Definitions

CHAPTER

TWO

LIBRARY

2.1 Installation

The moclo module is designed to be modular, and as such, you only need to install whatever functionalities you are
willing to use. Packages are distributed on PyPI, and it is advised to use pip to install them. See the pip documentation
to get pip if it is not installed on your system.

Commands below use pip in user mode: the packages will be installed in a user-dependent location, and no additional
permissions are needed. If for some reason you need a system-wide setup, remove the --user flag. Installing in user-
mode should be prefered to avoid dependency issues, in particular when on an OS which provides a package manager
(such as aptitude on Debian, or even homebrew on Mac OSX).

2.1.1 PyPI + pip

To download the latest releases from the Python Package Index:

$ pip install --user moclo moclo-ytk moclo-cidar moclo-ecoflex

2.1.2 GitHub + pip

To download the development version from the source repository, you can specify a subfolder in the installation com-
mand and directly install it:

$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-ytk
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-cidar
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-ecoflex

Check the CI build is passing, or else you may be installing a broken version of the library !

15

https://pip.pypa.io/en/stable/installing/

moclo Documentation, Release 0.4.7

2.2 Examples

This page contains examples in Python code, generated from Jupyter notebooks with nbsphinx.

2.2.1 YTK integration vector

In this example, we will be using the moclo library as well as the moclo-ytk extension kit to generate the pre-assembled
YTK integration vector (pYTK096) from the available YTK parts, as described in the *Lee et al.* paper

Structure

The list of parts, as well as the vector structure, can be found in the Supporting Table S1 from the Lee et al. supple-
mentary materials:

Loading parts

We’ll be loading each of the desired parts from the moclo-ytk registry. It is generated from the GenBank distributed
with the YTK kits. They can be found on the AddGene YTK page.

[2]: from moclo.registry.ytk import YTKRegistry
registry = YTKRegistry()

vector = registry['pYTK090'].entity # Part 8a
modules = [registry['pYTK008'].entity, # Part 1

registry['pYTK047'].entity, # Part 234r
registry['pYTK073'].entity, # Part 5
registry['pYTK074'].entity, # Part 6
registry['pYTK086'].entity, # Part 7
registry['pYTK092'].entity] # Part 8b

Checking parts

We can use dna_features_viewer to visualize your records before proceeding (for readability purposes, we’ll show
the records as linear although they are plasmids):

[3]: import itertools
import dna_features_viewer as dfv
import matplotlib.pyplot as plt

translator = dfv.BiopythonTranslator([lambda f: f.type != 'source'])
plt.figure(1, figsize=(24, 10))
for index, entity in enumerate(itertools.chain(modules, [vector])):

ax = plt.subplot(2, 4, index + 1)
translator.translate_record(entity.record).plot(ax)
plt.title(entity.record.id)

plt.show()

16 Chapter 2. Library

https://doi.org/10.1021/sb500366v
https://www.addgene.org/kits/moclo-ytk/#protocols-and-resources

moclo Documentation, Release 0.4.7

Creating the assembly

We use the Part 8a as our base assembly vector, and then assemble all the other parts into that vector:

[4]: assembly = vector.assemble(*modules)

Rendering the assembly sequence map

When creating an assembly, corresponding regions of the obtained sequence will be annotated with the ID of the
sequence they come from. We build a simple translator to color the different parts of the plasmid like in the original
paper.

With the translator ready, we can display the pre-assembled integration vector assembled by moclo:

[6]: vec_translator = IntegrationVectorTranslator([lambda f: f.type == 'source'])
vec_translator.translate_record(assembly, dfv.CircularGraphicRecord).plot(figure_width=8)
plt.show()

2.2. Examples 17

moclo Documentation, Release 0.4.7

Comparing the assembly to the expected vector

Hopefully the obtained assembly should look like the pYTK096 plasmid, distributed with the official YTK parts:

[7]: plt.figure(3, figsize=(24, 10))

ax = plt.subplot(2, 1, 1)
translator.translate_record(assembly).plot(ax)
plt.title('Assembly')

ax = plt.subplot(2, 1, 2)
translator.translate_record(registry['pYTK096'].entity.record).plot(ax)
plt.title('Expected')

plt.show()

18 Chapter 2. Library

moclo Documentation, Release 0.4.7

[]:

2.3 Library Reference

2.3.1 Record

class moclo.record.CircularRecord(SeqRecord)
A derived SeqRecord that contains a circular DNA sequence.

It handles the in operator as expected, and removes the implementation of the + operator since circular DNA
sequence do not have an end to append more nucleotides to. In addition, it overloads the >> and << operators to
allow rotating the sequence and its annotations, effectively changing the 0 position.

See also:

Bio.SeqRecord.SeqRecord documentation on the Biopython wiki.

__add__(other)
Add another sequence or string to this sequence.

Since adding an arbitrary sequence to a plasmid is ambiguous (there is no sequence end), trying to add a
sequence to a CircularRecord will raise a TypeError.

__contains__(char)
Implement the in keyword, searches the sequence.

__getitem__(index)
Return a sub-sequence or an individual letter.

The sub-sequence is always returned as a SeqRecord, since it is probably not circular anymore.

__init__(seq, id='<unknown id>', name='<unknown name>', description='<unknown description>',
dbxrefs=None, features=None, annotations=None, letter_annotations=None)

Create a new CircularRecord instance.

2.3. Library Reference 19

https://biopython.org/wiki/SeqRecord
https://docs.python.org/3/library/exceptions.html#TypeError

moclo Documentation, Release 0.4.7

If given a SeqRecord as the first argument, it will simply copy all attributes of the record. This allows
using Bio.SeqIO.read to open records, then loading them into a CircularRecord .

__lshift__(index)
Rotate the sequence counter-clockwise, preserving annotations.

__radd__(other)
Add another sequence or string to this sequence (from the left).

Since adding an arbitrary sequence to a plasmid is ambiguous (there is no sequence end), trying to add a
sequence to a CircularRecord will raise a TypeError.

__rshift__(index)
Rotate the sequence clockwise, preserving annotations.

reverse_complement(id=False, name=False, description=False, features=True, annotations=False,
letter_annotations=True, dbxrefs=False)

Return a new CircularRecord with reverse complement sequence.

2.3.2 Registry

Base class

class moclo.registry.base.AbstractRegistry(*args, **kwds)
An abstract registry holding MoClo plasmids.

Implementations

class moclo.registry.base.CombinedRegistry

A registry combining several registries into a single collection.

__init__()

class moclo.registry.base.EmbeddedRegistry(*args, **kwds)
An embedded registry, distributed with the library source code.

Records are stored within a GZip compressed Tar archive, using standard annotations to allow retrieving features
easily.

2.3.3 Modules

Moclo module classes.

A module is a sequence of DNA that contains a sequence of interest, such as a promoter, a CDS, a protein binding
site, etc., organised in a way it can be combined to other modules to create an assembly. This involves flanking that
target sequence with Type IIS restriction sites, which depend on the level of the module, as well as the chosen MoClo
protocol.

20 Chapter 2. Library

https://docs.python.org/3/library/exceptions.html#TypeError

moclo Documentation, Release 0.4.7

Abstract

class moclo.core.modules.AbstractModule(object)
An abstract modular cloning module.

cutter

the enzyme used to cut the target sequence from the backbone plasmid during Golden Gate assembly.

Type RestrictionType

__init__(record)

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

2.3. Library Reference 21

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

Level -1

class moclo.core.modules.Product(AbstractModule)
A level -1 module, often obtained as a PCR product.

Modules of this level are the lowest components of the MoClo system, but are not practical to work with until
they are assembled in a standard vector to obtain entries.

Level 0

class moclo.core.modules.Entry(AbstractModule)
A level 0 module, often obtained from the official toolkits plamisds.

Entries are assembled from products into a standard vector suitable for selection and storage.

Level 1

class moclo.core.modules.Cassette(AbstractModule)
A level 1 module, also refered as a Transcriptional Unit.

Cassettes can either express genes in their target organism, or be assembled into multigene modules for expressing
many genes at once, depending on the chosen cassette vector during level 0 assembly.

Level 2

class moclo.core.modules.Device(AbstractModule)
A level 2 module, also refered as a Multigene plasmid.

Modules of this level are assembled from several transcriptional units so that they contain several genes that
can be expressed all at once. Most of the MoClo implementations are designed so that multiple devices can
be assembled into a module that is also a valid level 1 module, as does the Golden Braid system with its and
plasmids.

2.3.4 Vectors

MoClo vector classes.

A vector is a plasmidic DNA sequence that can hold a combination of modules of the same level to create a single
module of the following level. Vectors contain a placeholder sequence that is replaced by the concatenation of the
modules during the Golden Gate assembly.

Abstract

class moclo.core.vectors.AbstractVector(object)
An abstract modular cloning vector.

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

22 Chapter 2. Library

moclo Documentation, Release 0.4.7

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

classmethod structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

2.3. Library Reference 23

moclo Documentation, Release 0.4.7

Level -1

class moclo.core.vectors.EntryVector(AbstractVector)
Level 0 vector.

Level 0

class moclo.core.vectors.CassetteVector(AbstractVector)
Level 1 vector.

Level 1

class moclo.core.vectors.DeviceVector(AbstractVector)
Level 2 vector.

2.3.5 Parts

Moclo part classes.

Abstract

class moclo.core.parts.AbstractPart(object)
An abstract modular cloning part.

Parts can be either modules or vectors, but are determined by their flanking overhangs sequences, declared in the
signature class attribute. The part structure is derived from the part class (module of vector), signature, and
restriction enzyme.

Example

>>> class ExamplePart(AbstractPart, Entry):
... cutter = BsaI
... signature = ('ATGC', 'ATTC')
...
>>> ExamplePart.structure()
'GGTCTCN(ATGC)(NN*N)(ATTC)NGAGACC'

__init__(record)

classmethod characterize(record)
Load the record in a concrete subclass of this type.

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

24 Chapter 2. Library

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

classmethod structure()

Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the part signature and the restriction enzyme
used in the Golden Gate assembly.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The vector placeholder sequence

3. The downstream (3’) overhang sequence

2.3.6 Errors

Base classes

class moclo.errors.MocloError(Exception)
Base class for all MoClo-related exceptions.

class moclo.errors.AssemblyError(MocloError, RuntimeError)
Assembly-specific run-time error.

class moclo.errors.AssemblyWarning(MocloError, Warning)
Assembly-specific run-time warning.

Warnings can be turned into errors using the warnings.catch_warnings decorator combined to warnings.
simplefilter with action set to "error".

Errors

class moclo.errors.DuplicateModules(AssemblyError)
Several modules share the same overhangs.

class moclo.errors.InvalidSequence(MocloError, ValueError)
Invalid sequence provided.

class moclo.errors.IllegalSite(InvalidSequence)
Sequence with illegal site provided.

class moclo.errors.MissingModule(AssemblyError)
A module is missing in the assembly.

2.3. Library Reference 25

https://docs.python.org/3/library/warnings.html#warnings.catch_warnings
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter

moclo Documentation, Release 0.4.7

Warnings

class moclo.errors.UnusedModules(AssemblyWarning)
Not all modules were used during assembly.

2.3.7 Record (moclo.record)

CircularRecord A derived SeqRecord that contains a circular DNA se-
quence.

2.3.8 Registry (moclo.registry.base)

Item A uniquely identified record in a registry.
AbstractRegistry An abstract registry holding MoClo plasmids.
CombinedRegistry A registry combining several registries into a single col-

lection.
EmbeddedRegistry An embedded registry, distributed with the library

source code.

2.3.9 Modules (moclo.core.modules)

AbstractModule An abstract modular cloning module.
Entry A level 0 module, often obtained from the official toolk-

its plamisds.
Cassette A level 1 module, also refered as a Transcriptional Unit.
Device A level 2 module, also refered as a Multigene plasmid.

2.3.10 Vectors (moclo.core.vectors)

AbstractVector An abstract modular cloning vector.
EntryVector Level 0 vector.
CassetteVector Level 1 vector.
DeviceVector Level 2 vector.

2.3.11 Parts (moclo.core.parts)

AbstractPart An abstract modular cloning part.

26 Chapter 2. Library

moclo Documentation, Release 0.4.7

2.3.12 Errors (moclo.errors)

Base classes

MocloError Base class for all MoClo-related exceptions.
AssemblyError Assembly-specific run-time error.
AssemblyWarning Assembly-specific run-time warning.

Errors

DuplicateModules Several modules share the same overhangs.
InvalidSequence Invalid sequence provided.
IllegalSite Sequence with illegal site provided.
MissingModule A module is missing in the assembly.

Warnings

UnusedModules Not all modules were used during assembly.

2.4 Changelogs

2.4.1 moclo

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

Unreleased

v0.4.7_ - 2021-11-08

Changed

• Dropped support for Python versions older than Python 3.6.

• Required minimum version of 1.78 for Biopython.

2.4. Changelogs 27

http://keepachangelog.com
http://semver.org/spec/v2.0.0.html

moclo Documentation, Release 0.4.7

v0.4.6_ - 2019-07-25

Changed

• Switch from cached-property to property-cached in dependencies.

v0.4.5 - 2019-02-22

Fixed

• Support all fs versions under 3.0.

v0.4.4 - 2019-02-11

Changed

• Add 2.3.0 to the supported fs versions.

v0.4.3 - 2019-01-06

Changed

• Add 2.2.0 to the supported fs versions.

Added

• Add Item.record shortcut to Item.entity.record in moclo.registry.

• Make moclo.core abstract classes check for illegal sites in sequence to be identified as valid.

• This CHANGELOG file.

Documented

• Fix typos.

v0.4.2 - 2018-08-16

Fixed

• Some registries not loading CircularRecord instances.

28 Chapter 2. Library

moclo Documentation, Release 0.4.7

v0.4.1 - 2018-08-16

Changed

• Bump required fs version to 2.1.0.

v0.4.0 - 2018-08-10

Added

• AbstractPart.characterize to load a record into a part instance.

• Option to include / exclude ELabFTWRegistry items using tags.

v0.3.0 - 2018-08-07

Added

• Annotate assembled vectors as circular in AbstractVector.assemble.

• eLabFTW registry connector in moclo.registry.elabftw.

Changed

• Move Item._find_type to public function moclo.registry.utils.find_type.

• Improve annotation generated in AbstractVector.assemble.

Fixed

• AbstractPart subclasses not being recognized as abstract.

v0.2.1 - 2018-07-27

Added

• moclo.registry.utils module with resistance idenfication function.

• Make AbstractVector.assemble add an alphabet to the generated sequence.

Documented

• Improved README.rst file.

2.4. Changelogs 29

moclo Documentation, Release 0.4.7

v0.2.0 - 2018-07-24

Added

• Use AbstracModule.cutter and AbstractVector.cutter to deduce the required structure for modules and
vectors.

• AbstractPart class to generate sequence structure based on part signature.

• Add registry API in moclo.registry module.

Changed

• Make StructuredRecord convert SeqRecord to CircularRecord on instantiation if needed.

• Use target_sequence method in AbstractVector.assemble.

• Make modules and vectors add sources to their target sequences when assembled.

• Patch CircularRecord.reverse_complement to return a CircularRecord.

Documented

• Add moclo.base.parts to documentation.

• Add example in AbstractPart docstring.

• Fix documentation of moclo.base

Fixed

• Fix AbstracModule.target_sequence and AbstractVector.target_sequence to take into account cutter
overhand position.

v0.1.0 - 2018-07-12

Initial public release.

2.4.2 moclo-cidar

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

30 Chapter 2. Library

http://keepachangelog.com
http://semver.org/spec/v2.0.0.html

moclo Documentation, Release 0.4.7

Unreleased

Added

• This CHANGELOG file.

Changed

• Update CIDAR sequences to latest AddGene data update (1.6.2).

v0.4.0 - 2018-08-16

Changed

• Bumped moclo minimal required version to v0.4.0.

Documented

• Add SVG images illustrating CIDAR parts to the API documentation.

• Fixed class hierarchy in API documentation.

v0.3.0 - 2018-08-07

Changed

• Bumped moclo minimal required version to v0.3.0.

Removed

• Location attribute handler from CIDARRegistry.

• DVA and DVK sequences from the registry as they are not MoClo elements.

v0.2.0 - 2018-07-25

Added

• Partial reference CIDAR sequences in moclo.registry.cidar.CIDARRegistry.

2.4. Changelogs 31

moclo Documentation, Release 0.4.7

Changed

• Use signature and cutter to generate structures of moclo.kits.cidar.CIDARPart subclasses.

• Bumped moclo minimal required version to v0.2.0.

Documented

• Fixed link to documentation in README.rst.

v0.1.0 - 2018-07-12

Initial public release.

2.4.3 moclo-ecoflex

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

Unreleased

Fixed

• Annotations of CmR cassette in pBP-BBa_B0034.

• Add missing sequences to the EcoFlex registry:

– Promoters: pBP-SJM9** series.

v0.3.1 - 2018-11-19

Added

• This CHANGELOG file.

Fixed

• Wheel distribution not embedding the moclo.registry.ecoflex module.

• Add missing sequences to the EcoFlex registry:

– Promoters: pBP-BBa_B0012, pBP-BBa_B0015, pBP-BBa_B0034,

– Tags: pBP-HexHis

– CDS: pBP-eCFP, pBP-eGFP

– Promoter + RBS: pBP-T7-RBS-His6

– Device Vectors: pTU2-a-RFP, pTU2-b-RFP

32 Chapter 2. Library

http://keepachangelog.com
http://semver.org/spec/v2.0.0.html

moclo Documentation, Release 0.4.7

v0.3.0 - 2018-08-16

Changed

• Bumped moclo minimal required version to v0.4.0.

Documented

• Fixed class hierarchy in API documentation.

v0.2.0 - 2018-08-07

Added

• Partial reference EcoFlex sequences in moclo.registry.ecoflex.EcoFlexRegistry.

Changed

• Use signature and cutter to generate structures of moclo.kits.ecoflex.EcoFlexPart subclasses.

• Bumped moclo minimal required version to v0.3.0.

v0.1.0 - 2018-07-12

Initial public release.

2.4.4 moclo-moclo

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

v0.1.0 - 2018-07-12

Initial public release.

2.4.5 moclo-plant

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

2.4. Changelogs 33

http://keepachangelog.com
http://semver.org/spec/v2.0.0.html
http://keepachangelog.com
http://semver.org/spec/v2.0.0.html

moclo Documentation, Release 0.4.7

v0.1.0 - 2018-07-12

Initial public release.

2.4.6 moclo-ytk

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

Unreleased

Changed

• Update Pichia ToolKit sequences to latest AddGene data update (1.6.2).

Added

• This CHANGELOG file.

v0.4.0 - 2018-08-16

Changed

• Bumped moclo minimal required version to v0.4.0.

Documented

• Fixed class hierarchy in API documentation.

v0.3.0 - 2018-08-07

Changed

• Bumped moclo minimal required version to v0.3.0.

Documented

• Fix links to documentation in README.rst.

• Add YTK specific notebook in a Docker image.

34 Chapter 2. Library

http://keepachangelog.com
http://semver.org/spec/v2.0.0.html

moclo Documentation, Release 0.4.7

v0.2.0 - 2018-07-24

Added

• Reference Yeast ToolKit sequences in moclo.registry.ytk.YTKRegistry.

• Reference Pichia ToolKit sequences in moclo.registry.ytk.PTKRegistry.

Changed

• Redefined YTKProduct._structure as a public static method.

v0.1.0 - 2018-07-12

Initial public release.

2.5 About

2.5.1 Authors

moclo is developped and maintained by:

Martin Larralde
Graduate student, Biology department
École Normale Supérieure Paris Saclay
martin.larralde@ens-paris-saclay.fr

This library was developped during a summer internship at Institut Pasteur, under the supervision of:

François Bertaux
Reserach Engineer, InBio Unit
Inria / Institut Pasteur
francois.bertaux@pasteur.fr

Grégory Batt
Senior Scientist, Head of InBio Unit
Inria / Institut Pasteur
gregory.batt@inria.fr

2.5. About 35

mailto:martin.larralde@ens-paris-saclay.fr
mailto:francois.bertaux@pasteur.fr
mailto:gregory.batt@inria.fr

moclo Documentation, Release 0.4.7

2.5.2 License

This project is licensed under the MIT License.

36 Chapter 2. Library

https://choosealicense.com/licenses/mit/

CHAPTER

THREE

KITS

3.1 MoClo Kit

An implementation of the original MoClo ToolKit for the Python MoClo library.

References

37

https://link.springer.com/protocol/10.1007/978-1-0716-0908-8_8

moclo Documentation, Release 0.4.7

1. Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011). A Modular Cloning System for Stan-
dardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765..

2. Werner, S., Engler, C., Weber, E., Gruetzner, R., & Marillonnet, S. (2012). Fast track assembly of multigene
constructs using Golden Gate cloning and the MoClo system. Bioengineered, 3(1), 38–43..

3. Marillonnet, S., Werner, S. (2020). Assembly of Multigene Constructs Using the Modular Cloning System
MoClo. Methods Mol Biol. 2020;2205:125-141..

3.1.1 Level -1

Module

class moclo.kits.moclo.MoCloProduct(Product)
An original MoClo product.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BpiI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

38 Chapter 3. Kits

https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.4161/bbug.3.1.18223
https://doi.org/10.4161/bbug.3.1.18223
https://10.1007/978-1-0716-0908-8_8
https://10.1007/978-1-0716-0908-8_8
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.moclo.MoCloEntryVector(EntryVector)
A MoClo entry vector.

References

Weber et al., Figure 2A.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

3.1. MoClo Kit 39

moclo Documentation, Release 0.4.7

cutter

alias of Bio.Restriction.Restriction.BpiI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

classmethod structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

3.1.2 Level 0

Module

class moclo.kits.moclo.MoCloEntry(Entry)
An original MoClo entry.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

40 Chapter 3. Kits

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

moclo Documentation, Release 0.4.7

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.moclo.MoCloCassetteVector(CassetteVector)
A MoClo cassette vector.

References

Weber et al., Figure 4A.

__init__(record)

3.1. MoClo Kit 41

https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

classmethod structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

42 Chapter 3. Kits

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

Parts

class moclo.kits.moclo.MoCloPro(MoCloPart, MoCloEntry)
An original MoClo promoter part.

class moclo.kits.moclo.MoClo5U(MoCloPart, MoCloEntry)
An original MoClo 5’ UTR part.

class moclo.kits.moclo.MoClo5Uf(MoCloPart, MoCloEntry)
An original MoClo 5’UTR part for N-terminal tag linkage.

class moclo.kits.moclo.MoCloNTag(MoCloPart, MoCloEntry)
An original MoClo N-terminal tag part.

class moclo.kits.moclo.MoCloPro5U(MoCloPart, MoCloEntry)
An original MoClo promoter fused with a 5’UTR part.

class moclo.kits.moclo.MoCloPro5Uf(MoCloPart, MoCloEntry)
An original MoClo promoter fused with a 5’UTR for N-terminal linkage.

class moclo.kits.moclo.MoCloCDS1(MoCloPart, MoCloEntry)
An original MoClo CDS1.

class moclo.kits.moclo.MoCloCDS1ns(MoCloPart, MoCloEntry)
An original MoClo CDS1 without STOP codon for C-terminal tag linkage.

class moclo.kits.moclo.MoCloSP(MoCloPart, MoCloEntry)
An original MoClo signal peptide part.

class moclo.kits.moclo.MoCloCDS2(MoCloPart, MoCloEntry)
An original MoClo CDS2 part.

class moclo.kits.moclo.MoCloCDS2ns(MoCloPart, MoCloEntry)
An original MoClo CDS2 for C-terminal tag linkage.

class moclo.kits.moclo.MoCloCTag(MoCloPart, MoCloEntry)
An original MoClo C-terminal tag part.

class moclo.kits.moclo.MoClo3U(MoCloPart, MoCloEntry)
An original MoClo 3’UTR part.

class moclo.kits.moclo.MoCloTer(MoCloPart, MoCloEntry)
An original MoClo terminator part.

class moclo.kits.moclo.MoClo3UTer(MoCloPart, MoCloEntry)
An original MoClo terminator part.

class moclo.kits.moclo.MoCloGene(MoCloPart, MoCloEntry)
An complete transcription unit stored as an original MoClo part.

3.1. MoClo Kit 43

moclo Documentation, Release 0.4.7

3.1.3 Level 1

Module

class moclo.kits.moclo.MoCloCassette(Cassette)
An original MoClo cassette.

cutter

alias of Bio.Restriction.Restriction.BpiI

Vector

class moclo.kits.moclo.MoCloDeviceVector(DeviceVector)
An original MoClo device vector.

References

Weber et al., Figure 4A.

cutter

alias of Bio.Restriction.Restriction.BpiI

Parts

class moclo.kits.moclo.MoCloEndLinker(MoCloPart, MoCloCassette)
An Icon Genetic end linker part.

References

Weber et al., Figure 5.

3.1.4 Level M

Parts

class moclo.kits.moclo.MoCloLevelMVector(MoCloPart, MoCloDeviceVector)

cutter

alias of Bio.Restriction.Restriction.BpiI

classmethod structure()

Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the part signature and the restriction enzyme
used in the Golden Gate assembly.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

44 Chapter 3. Kits

moclo Documentation, Release 0.4.7

1. The upstream (5’) overhang sequence

2. The vector placeholder sequence

3. The downstream (3’) overhang sequence

class moclo.kits.moclo.MoCloLevelMEndLinker(MoCloPart, MoCloCassette)

classmethod structure()

Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the part signature and the restriction enzyme
used in the Golden Gate assembly.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The vector placeholder sequence

3. The downstream (3’) overhang sequence

3.1.5 Level P

Parts

class moclo.kits.moclo.MoCloLevelPVector(MoCloPart, MoCloCassetteVector)

cutter

alias of Bio.Restriction.Restriction.BsaI

classmethod structure()

Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the part signature and the restriction enzyme
used in the Golden Gate assembly.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The vector placeholder sequence

3. The downstream (3’) overhang sequence

class moclo.kits.moclo.MoCloLevelPEndLinker(MoCloPart, MoCloEntry)

cutter

alias of Bio.Restriction.Restriction.BsaI

3.1. MoClo Kit 45

moclo Documentation, Release 0.4.7

classmethod structure()

Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the part signature and the restriction enzyme
used in the Golden Gate assembly.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The vector placeholder sequence

3. The downstream (3’) overhang sequence

3.2 Plant Parts Kit

An implementation of the Plant Parts Kit for the Python MoClo library.

References

1. Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011). A Modular Cloning System for Stan-
dardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765.

2. Werner, S., Engler, C., Weber, E., Gruetzner, R., & Marillonnet, S. (2012). Fast track assembly of multigene
constructs using Golden Gate cloning and the MoClo system. Bioengineered, 3(1), 38–43.

3.3 CIDAR Kit

An implementation of the CIDAR ToolKit for the Python MoClo library.

References

1. Iverson, S. V., Haddock, T. L., Beal, J., & Densmore, D. M. (2016). CIDAR MoClo: Improved MoClo Assembly
Standard and New E. coli Part Library Enable Rapid Combinatorial Design for Synthetic and Traditional Biology.
ACS Synthetic Biology, 5(1), 99–103.

2. Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011). A Modular Cloning System for Stan-
dardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765.

46 Chapter 3. Kits

https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.4161/bbug.3.1.18223
https://doi.org/10.4161/bbug.3.1.18223
https://doi.org/10.1021/acssynbio.5b00124
https://doi.org/10.1021/acssynbio.5b00124
https://doi.org/10.1021/acssynbio.5b00124
https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.1371/journal.pone.0016765

moclo Documentation, Release 0.4.7

3.3.1 Level -1

Module

class moclo.kits.cidar.CIDARProduct(Product)
A CIDAR MoClo product.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BbsI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

3.3. CIDAR Kit 47

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.cidar.CIDAREntryVector(EntryVector)
A CIDAR MoClo entry vector.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

cutter

alias of Bio.Restriction.Restriction.BbsI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

48 Chapter 3. Kits

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

static structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

3.3.2 Level 0

Module

class moclo.kits.cidar.CIDAREntry(Entry)
A CIDAR MoClo entry.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

3.3. CIDAR Kit 49

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.cidar.CIDARCassetteVector(CassetteVector)
A CIDAR Moclo cassette vector.

References

Iverson et al., Figure 1.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

50 Chapter 3. Kits

moclo Documentation, Release 0.4.7

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

static structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

3.3. CIDAR Kit 51

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

Parts

class moclo.kits.cidar.CIDARPromoter(CIDARPart, CIDAREntry)
A CIDAR Promoter part.

Parts of this type contain contain a promoter. The upstream overhangs can be changed to amend the order of
assembly of a circuit from different cassettes.

Note: The CIDAR toolkit parts provide 4 different upstream overhangs: GGAG, GCTT, CGCT, and TGCC.
These are not enforced in this module, and any upstream sequence will be accepted. The downstream sequence
however is always TACT.

class moclo.kits.cidar.CIDARRibosomeBindingSite(CIDARPart, CIDAREntry)
A CIDAR ribosome binding site.

Parts of this type contain a ribosome binding site (RBS). The downstream overhang doubles as the start codon
for the subsequent coding sequence.

class moclo.kits.cidar.CIDARCodingSequence(CIDARPart, CIDAREntry)
A CIDAR coding sequence.

Parts of this type contain a coding sequence, with the start codon located on the upstream overhang.

Caution: Although the start codon is located on the upstream overhang, a STOP codon is expected to be
found within this part target sequence before the downstream overhang.

class moclo.kits.cidar.CIDARTerminator(CIDARPart, CIDAREntry)
A CIDAR terminator.

Parts of this type contain a terminator. The upstream overhang is always the same for the terminator to directly
follow the coding sequence, but the downstream overhang can vary to specify an order for a following multigenic
assembly within a device.

Note: The CIDAR toolkit parts provide 4 different downstream overhangs: GCTT, CGCT, TGCC, and ACTA.
These are not enforced in this module, and any downstream sequence will be accepted. The upstream sequence
however is always AGGT.

52 Chapter 3. Kits

moclo Documentation, Release 0.4.7

3.3.3 Level 1

Module

class moclo.kits.cidar.CIDARCassette(Cassette)
A CIDAR MoClo cassette.

cutter

alias of Bio.Restriction.Restriction.BbsI

Vector

class moclo.kits.cidar.CIDARDeviceVector(DeviceVector)
A CIDAR Moclo device vector.

References

Iverson et al., Figure 1.

cutter

alias of Bio.Restriction.Restriction.BbsI

static structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

3.3.4 Level 2

Module

class moclo.kits.cidar.CIDARDevice(Device)
A CIDAR MoClo device.

cutter

alias of Bio.Restriction.Restriction.BsaI

3.3. CIDAR Kit 53

moclo Documentation, Release 0.4.7

3.4 EcoFlex Kit

An implementation of the EcoFlex ToolKit for the Python MoClo library.

References

1. Moore, S. J., Lai, H.-E., Kelwick, R. J. R., Chee, S. M., Bell, D. J., Polizzi, K. M., Freemont, P. S. (2016).
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology. ACS Synthetic Biology, 5(10), 1059–1069.

2. Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011). A Modular Cloning System for Stan-
dardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765.

3.4.1 Level 0

Module

class moclo.kits.ecoflex.EcoFlexEntry(Entry)
An EcoFlex MoClo entry.

EcoFlex entries are stored and shared as plasmids flanked by BsaI binding sites at both ends of the target sequence.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

54 Chapter 3. Kits

https://doi.org/10.1021/acssynbio.6b00031
https://doi.org/10.1021/acssynbio.6b00031
https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.1371/journal.pone.0016765
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.ecoflex.EcoFlexCassetteVector(CassetteVector)
An EcoFlex MoClo cassette vector.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

3.4. EcoFlex Kit 55

moclo Documentation, Release 0.4.7

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

static structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

Parts

class moclo.kits.ecoflex.EcoFlexPromoter(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo promoter.

class moclo.kits.ecoflex.EcoFlexRBS(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo ribosome binding site.

Parts of this type contain a ribosome binding site (RBS). The last adenosine serves as the beginning of the start
codon of the following CDS.

56 Chapter 3. Kits

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

class moclo.kits.ecoflex.EcoFlexTagLinker(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo tag linker.

Parts of this type also contain a RBS, but they allow adding a N-terminal tag sequence before the CDS.

class moclo.kits.ecoflex.EcoFlexTag(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo N-terminal tag.

Parts of this type typically contain tags that are added to the N-terminus of the translated protein, such as a hexa
histidine or a Strep(II) tag.

class moclo.kits.ecoflex.EcoFlexCodingSequence(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo coding sequence.

Parts of this type contain a coding sequence (CDS), with the start codon beginning on the upstream overhang.

Caution: Although the start codon is located on the upstream overhang, a STOP codon is expected to be
found within this part target sequence before the downstream overhang.

class moclo.kits.ecoflex.EcoFlexTerminator(EcoFlexPart, EcoFlexEntry)
An EcoFlex MoClo terminator.

3.4.2 Level 1

Module

class moclo.kits.ecoflex.EcoFlexCassette(Cassette)
An EcoFlex MoClo cassette.

cutter

alias of Bio.Restriction.Restriction.BsmBI

Vector

class moclo.kits.ecoflex.EcoFlexDeviceVector(DeviceVector)
An EcoFlex MoClo device vector.

cutter

alias of Bio.Restriction.Restriction.BsmBI

static structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

3.4. EcoFlex Kit 57

moclo Documentation, Release 0.4.7

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

3.4.3 Level 2

Module

class moclo.kits.ecoflex.EcoFlexDevice(Device)
An EcoFlex MoClo device.

cutter

alias of Bio.Restriction.Restriction.BsaI

3.5 Yeast ToolKit (YTK) / Pichia ToolKit (PTK)

An implementation of the Yeast ToolKit for the Python MoClo library.

This module is tested against the officials parts available in the Yeast ToolKit (YTK), and also against the Pichia ToolKit
(PTK) parts since they were designed to be compatible with each other.

The documentation of this module is mostly adapted from the Lee et al. supplementary data. Each item also has specific
sections that are organized as follow:

Note: this section describes a behaviour that is not part of the YTK standard, but that is implemnted in all YTK official
parts, and encouraged to follow by the YTK authors.

Caution this section describes a behaviour that goes against the MoClo standard, but which you are entitled to follow
for your parts to be valid YTK parts.

Danger this section describes a quirk specific to the moclo-ytk library.

References

1. Lee, M. E., DeLoache, W. C., Cervantes, B., Dueber, J. E. (2015). A Highly Characterized Yeast Toolkit for
Modular, Multipart Assembly. ACS Synthetic Biology, 4(9), 975–986.

2. Obst, U., Lu, T. K., Sieber, V. (2017). A Modular Toolkit for Generating Pichia pastoris Secretion Libraries.
ACS Synthetic Biology, 6(6), 1016–1025

3. Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011). A Modular Cloning System for Stan-
dardized Assembly of Multigene Constructs. PLOS ONE, 6(2), e16765.

58 Chapter 3. Kits

https://doi.org/10.1021/sb500366v
https://doi.org/10.1021/sb500366v
https://doi.org/10.1021/acssynbio.6b00337
https://doi.org/10.1021/acssynbio.6b00337
https://doi.org/10.1371/journal.pone.0016765
https://doi.org/10.1371/journal.pone.0016765

moclo Documentation, Release 0.4.7

3.5.1 Level -1

Module

class moclo.kits.ytk.YTKProduct(Product)
A MoClo Yeast ToolKit product.

As the YTK entry vector does not contain the required BsaI restriction site, the site must be contained in the
product sequence.

Caution: The standard construction describe in the Lee et al. paper directly inserts the beginning of the
BsaI recognition site inside of the two BsmBI overhangs at both ends of the product. Other valid constructs
that do not proceed like so won’t be considered a valid product, although they contain the required BsaI site.

References

Lee et al., Supplementary Figure S19.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BsmBI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

static structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

3.5. Yeast ToolKit (YTK) / Pichia ToolKit (PTK) 59

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created
during restriction.

Vector

class moclo.kits.ytk.YTKEntryVector(EntryVector)
A MoClo Yeast ToolKit entry vector.

Any plasmid with two BsmBI restriction sites can be used to create a YTK entry, although the toolkit-provided
entry vector (pYTK001) is probably the most appropriate plasmid to use.

Caution: To the contrary of the usual MoClo entry vectors described in the Weber et al. paper, the YTK
entry vectors do not provide another BsaI restriction site enclosing the placeholder sequence. As such, YTK
Level -1 modules must embed the BsaI binding site.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

60 Chapter 3. Kits

moclo Documentation, Release 0.4.7

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

cutter

alias of Bio.Restriction.Restriction.BsmBI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

classmethod structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

3.5.2 Level 0

Module

class moclo.kits.ytk.YTKEntry(Entry)
A MoClo Yeast ToolKit entry.

YTK entries are stored and shared as plasmids flanked by BsaI binding sites at both ends of the target sequence.

3.5. Yeast ToolKit (YTK) / Pichia ToolKit (PTK) 61

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

Danger: Although the BsaI binding sites is not located within the target sequence for almost all the standard
toolkit parts, special Type 234r parts have these sites reversed, because these parts are used to assemble
cassette vectors and require the final construct to contain a BsaI site to allow assembly with other parts.
Those parts will not match the default YTKEntry, and must be used as YTKPart234r instances for the
assembly logic to work as expected.

__init__(record)

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

overhang_end()

Get the downstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

overhang_start()

Get the upstream overhang of the target sequence.

Returns the downstream overhang.

Return type Seq

classmethod structure()

Get the module structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The upstream (5’) overhang sequence

2. The module target sequence

3. The downstream (3’) overhang sequence

target_sequence()

Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than the sequence of interest: for instance
they can contain an antibiotic marker, that will not be part of the assembly when that module is assembled
into a vector; only the target sequence is inserted.

Returns the target sequence with annotations.

Return type SeqRecord

Note: Depending on the cutting direction of the restriction enzyme used during assembly, the overhang
will be left at the beginning or at the end, so the obtained record is exactly the sequence the enzyme created

62 Chapter 3. Kits

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

during restriction.

Vector

class moclo.kits.ytk.YTKCassetteVector(CassetteVector)
A MoClo Yeast ToolKit cassette vector.

The YTK provides a canonical integration plasmid, preassembled from several other parts, that can be used as a
cassette vector for an assembly of Type 2, 3 and 4 parts. Type 8, 8a and 678 parts are also considered as cassette
vectors.

References

Lee et al., Figure 2.

__init__(record)

assemble(module, *modules, **kwargs)
Assemble the provided modules into the vector.

Parameters

• module (AbstractModule) – a module to insert in the vector.

• modules (AbstractModule, optional) – additional modules to insert in the vector. The
order of the parameters is not important, since modules will be sorted by their start overhang
in the function.

Returns the assembled sequence with sequence annotations inherited from the vector and the
modules.

Return type SeqRecord

Raises

• DuplicateModules – when two different modules share the same start overhang, leading
in possibly non-deterministic constructs.

• MissingModule – when a module has an end overhang that is not shared by any other
module, leading to a partial construct only

• InvalidSequence – when one of the modules does not match the required module struc-
ture (missing site, wrong overhang, etc.).

• UnusedModules – when some modules were not used during the assembly (mostly caused
by duplicate parts).

cutter

alias of Bio.Restriction.Restriction.BsaI

is_valid()

Check if the wrapped record follows the required class structure.

Returns True if the record is valid, False otherwise.

Return type bool

3.5. Yeast ToolKit (YTK) / Pichia ToolKit (PTK) 63

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

moclo Documentation, Release 0.4.7

overhang_end()

Get the downstream overhang of the vector sequence.

overhang_start()

Get the upstream overhang of the vector sequence.

placeholder_sequence()

Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules during the assembly. It often contains
a dropout sequence, such as a GFP expression cassette that can be used to measure the progress of the
assembly.

classmethod structure()

Get the vector structure, as a DNA regex pattern.

Warning: If overloading this method, the returned pattern must include 3 capture groups to capture
the following features:

1. The downstream (3’) overhang sequence

2. The vector placeholder sequence

3. The upstream (5’) overhang sequence

target_sequence()

Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded during the assembly (everything except
the placeholder sequence).

Parts

Base Parts

class moclo.kits.ytk.YTKPart1(YTKPart, YTKEntry)
A YTK Type 1 part (Upstream assembly connector).

Parts of this type contain non-coding and non-regulatory sequences that are used to direct assembly of multigene
plasmids, such as ligation sites for other Type IIS endonucleases (e.g. BsmBI).

Note: Official toolkit Type 1 parts also include a EcoRI and XbaI site just after the upstream overhang for
BioBrick compatibility of the assembled cassettes and multi-gene plasmids.

class moclo.kits.ytk.YTKPart2(YTKPart, YTKEntry)
A YTK Type 2 part (Promoter).

Parts of this type contain a promoter. The downstream overhang doubles as the start codon for the subsequent
Type 3 or Type 3a coding sequence.

64 Chapter 3. Kits

moclo Documentation, Release 0.4.7

Note: Official toolkit Type 2 parts also include a BglII site immediately preceding the start codon (overlapping
the downstream overhang) for BglBrick compatibility.

class moclo.kits.ytk.YTKPart3(YTKPart, YTKEntry)
A YTK Type 3 part (Coding sequence).

Parts of this type contain a coding sequence, with the start codon located on the upstream overhang. If a stop
codon is omitted from the part, and two bases are added before the downstream overhang, the resulting site can
be used as a two amino acid linker to a Type 4 or 4a C-terminal fusion.

Note: Official toolkit Type 3 parts also include a BamHI recognition site at the end of the included CDS
(overlapping the downstream overhang) for BglBrick compatibility.

class moclo.kits.ytk.YTKPart3a(YTKPart, YTKEntry)
A YTK Type 3a part (N-terminal coding sequence).

class moclo.kits.ytk.YTKPart3b(YTKPart, YTKEntry)
A YTK Type 3b part (C-terminal coding sequence).

Note: As with Type 3 parts, official toolkits Type 3b parts also include a BamHI recognition site at the end of
the included CDS (overlapping the downstream overhang) for BglBrick compatibility.

class moclo.kits.ytk.YTKPart4(YTKPart, YTKEntry)
A YTK Type 4 part (Transcriptional terminator).

As Type 3 parts do not include a stop codon, parts of this type should encode an in-frame stop codon before
the transcriptional terminator. Commonly used C-terminal fusions, such as purification or epitope tags, but it is
recommended to use YTKPart4a and YTKPart4b subtypes instead.

Note: Official toolkit Type 4 parts all start by a stop codon directly after the upstream overhang, followed by a
XhoI recognition site which enables BglBrick compatibility, then followed by the terminator sequence itself.

class moclo.kits.ytk.YTKPart4a(YTKPart, YTKEntry)
A YTK Type 4a part (C-terminal tag sequence).

Type 4a parts contain additional coding sequences that will be fused to the C-terminal extremity of the protein.
These parts include, but are not limited to: localisation tags, purification tags, fluorescent proteins.

Caution: In contrast to the Type 3 and 3b parts, the convention for 4a parts is to include the stop codon
rather than enable read-through of the downstream overhang, although that convention it is not enforced.

3.5. Yeast ToolKit (YTK) / Pichia ToolKit (PTK) 65

moclo Documentation, Release 0.4.7

Note: Official toolkit Type 4a parts contain a stop codon after the CDS, itself immediately followed by a XhoI
recognition site just before the downstream overhang, for BglBrick compatibility.

class moclo.kits.ytk.YTKPart4b(YTKPart, YTKEntry)
A YTK Type 4b part (Terminator sequence).

Type 4b contain transcriptional terminators, but are not required to encode an in-frame start codon, as it should
be located in the Type 4a part that precedes it.

class moclo.kits.ytk.YTKPart5(YTKPart, YTKEntry)
A YTK Type 5 part (Downstream assembly connector).

As with Type 1 parts, parts of this type provide sequences such as restriction enzymes recognition sites, for
instance in order to direct multigene expression plasmids.

Note: Official toolkit parts also include a SpeI and PstI site at the end of the part sequence for BioBrick
compatibility of the assembled cassettes and multi-gene plasmids.

class moclo.kits.ytk.YTKPart6(YTKPart, YTKEntry)
A YTK Type 6 part (Yeast marker).

Parts of this type contain a selectable marker for S. cerevisiae, as a full expression cassette (promoter, ORF, and
terminal) for conferring the selectable phenotype (such as drug-resistance or bioluminescence).

class moclo.kits.ytk.YTKPart7(YTKPart, YTKEntry)
A YTK Part Type 7 part (Yeast origin / 3’ homology).

Depending on the expression organism (E.coli or S. ceverisiae), this sequence will either hold a yeast origin of
replication, or a 3’ homology sequence for integration in the bacterial genome.

class moclo.kits.ytk.YTKPart8(YTKPart, YTKCassetteVector)
A YTK Type 8 part (Bacterial origin & marker).

Parts of this type contain a bacterial origin of replication, as well as an antibiotic resistance marker. They act
as the Golden Gate Assembly vector when assembling a cassette, and as such should also embbed a dropout
sequence, such as a fluorescent protein expression cassette.

Note: Official toolkit parts use an mRFP coding sequence as the dropout, and also include NotI restriction site
at each end of the part to allow the verification of new assemblies.

class moclo.kits.ytk.YTKPart8a(YTKPart, YTKCassetteVector)
A YTK Part 8a part (Bacterial origin & marker).

Parts of this type, like Type 8 parts, include a bacterial origin of replication and an antibiotic resistance marker,
and act as Assembly vectors.

66 Chapter 3. Kits

moclo Documentation, Release 0.4.7

Note: Official toolkit parts use an mRFP coding sequence as the dropout, and also include NotI restriction site
at each end of the part so the integration plasmid can be linearized prior to transformation into yeast.

class moclo.kits.ytk.YTKPart8b(YTKPart, YTKEntry)
A YTK Type 8b part (5’ homology).

As with certain Type 7 parts, parts of this type contain long sequences of homology to the genome that is upstream
of the target locus.

Composite

class moclo.kits.ytk.YTKPart234(YTKPart, YTKEntry)
A YTK Type 234 part (Composite 2, 3, 4).

Type 234 parts are composed of a complete expression cassette (promoter, coding sequence, and terminator)
fused into a single part, instead of separate Type 2, 3 and 4 parts.

class moclo.kits.ytk.YTKPart234r(YTKPart, YTKEntry)
A YTK Type 234 part (Composite 2, 3, 4) with reversed BsaI sites.

Type 234r parts are designed so that the BsaI sites are kept within the final cassette. They are used to assemble
canonical integration vectors, where the Type 234 part acts as a placeholder until replaced by actual Type 2, 3
and 4 parts in the final construct.

class moclo.kits.ytk.YTKPart678(YTKPart, YTKCassetteVector)
A YTK Type 678 part (Composite 6, 7, 8).

Type 678 parts are used when there is no requirement for yeast markers and origins to be included in the final
assembly, for instance when assembling an intermediary plasmid acting as a vector for a multi-gene construct.

3.5.3 Level 1

Module

class moclo.kits.ytk.YTKCassette(Cassette)
A MoClo Yeast ToolKit cassette.

cutter

alias of Bio.Restriction.Restriction.BsmBI

3.5. Yeast ToolKit (YTK) / Pichia ToolKit (PTK) 67

moclo Documentation, Release 0.4.7

Vector

class moclo.kits.ytk.YTKDeviceVector(DeviceVector)
A MoClo Yeast ToolKit multigene vector.

Parts of Type 1 and 5 are used to order the cassette plasmids within the multigene assembly. The vector always
contains a ConLS and ConRE parts.

References

Lee et al., Supplementary Figure S21.

cutter

alias of Bio.Restriction.Restriction.BsmBI

68 Chapter 3. Kits

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

69

moclo Documentation, Release 0.4.7

70 Chapter 4. Indices and tables

PYTHON MODULE INDEX

m
moclo.core.modules, 20
moclo.core.parts, 24
moclo.core.vectors, 22
moclo.errors, 25
moclo.kits.cidar, 46
moclo.kits.ecoflex, 54
moclo.kits.moclo, 37
moclo.kits.plant, 46
moclo.kits.ytk, 58
moclo.record, 19
moclo.registry.base, 20

71

moclo Documentation, Release 0.4.7

72 Python Module Index

INDEX

Symbols
__add__() (moclo.record.CircularRecord method), 19
__contains__() (moclo.record.CircularRecord

method), 19
__getitem__() (moclo.record.CircularRecord method),

19
__init__() (moclo.core.modules.AbstractModule

method), 21
__init__() (moclo.core.parts.AbstractPart method), 24
__init__() (moclo.kits.cidar.CIDARCassetteVector

method), 50
__init__() (moclo.kits.cidar.CIDAREntry method), 49
__init__() (moclo.kits.cidar.CIDAREntryVector

method), 48
__init__() (moclo.kits.cidar.CIDARProduct method),

47
__init__() (moclo.kits.ecoflex.EcoFlexCassetteVector

method), 55
__init__() (moclo.kits.ecoflex.EcoFlexEntry method),

54
__init__() (moclo.kits.moclo.MoCloCassetteVector

method), 41
__init__() (moclo.kits.moclo.MoCloEntry method), 40
__init__() (moclo.kits.moclo.MoCloEntryVector

method), 39
__init__() (moclo.kits.moclo.MoCloProduct method),

38
__init__() (moclo.kits.ytk.YTKCassetteVector method),

63
__init__() (moclo.kits.ytk.YTKEntry method), 62
__init__() (moclo.kits.ytk.YTKEntryVector method),

60
__init__() (moclo.kits.ytk.YTKProduct method), 59
__init__() (moclo.record.CircularRecord method), 19
__init__() (moclo.registry.base.CombinedRegistry

method), 20
__lshift__() (moclo.record.CircularRecord method),

20
__radd__() (moclo.record.CircularRecord method), 20
__rshift__() (moclo.record.CircularRecord method),

20

A
AbstractModule (class in moclo.core.modules), 21
AbstractPart (class in moclo.core.parts), 24
AbstractRegistry (class in moclo.registry.base), 20
AbstractVector (class in moclo.core.vectors), 22
assemble() (moclo.core.vectors.AbstractVector

method), 22
assemble() (moclo.kits.cidar.CIDARCassetteVector

method), 50
assemble() (moclo.kits.cidar.CIDAREntryVector

method), 48
assemble() (moclo.kits.ecoflex.EcoFlexCassetteVector

method), 55
assemble() (moclo.kits.moclo.MoCloCassetteVector

method), 41
assemble() (moclo.kits.moclo.MoCloEntryVector

method), 39
assemble() (moclo.kits.ytk.YTKCassetteVector method),

63
assemble() (moclo.kits.ytk.YTKEntryVector method),

60
AssemblyError (class in moclo.errors), 25
AssemblyWarning (class in moclo.errors), 25

C
Cassette (class in moclo.core.modules), 22
CassetteVector (class in moclo.core.vectors), 24
characterize() (moclo.core.parts.AbstractPart class

method), 24
CIDARCassette (class in moclo.kits.cidar), 53
CIDARCassetteVector (class in moclo.kits.cidar), 50
CIDARCodingSequence (class in moclo.kits.cidar), 52
CIDARDevice (class in moclo.kits.cidar), 53
CIDARDeviceVector (class in moclo.kits.cidar), 53
CIDAREntry (class in moclo.kits.cidar), 49
CIDAREntryVector (class in moclo.kits.cidar), 48
CIDARProduct (class in moclo.kits.cidar), 47
CIDARPromoter (class in moclo.kits.cidar), 52
CIDARRibosomeBindingSite (class in mo-

clo.kits.cidar), 52
CIDARTerminator (class in moclo.kits.cidar), 52
CircularRecord (class in moclo.record), 19

73

moclo Documentation, Release 0.4.7

CombinedRegistry (class in moclo.registry.base), 20
cutter (moclo.core.modules.AbstractModule attribute),

21
cutter (moclo.kits.cidar.CIDARCassette attribute), 53
cutter (moclo.kits.cidar.CIDARCassetteVector at-

tribute), 51
cutter (moclo.kits.cidar.CIDARDevice attribute), 53
cutter (moclo.kits.cidar.CIDARDeviceVector attribute),

53
cutter (moclo.kits.cidar.CIDAREntry attribute), 49
cutter (moclo.kits.cidar.CIDAREntryVector attribute),

48
cutter (moclo.kits.cidar.CIDARProduct attribute), 47
cutter (moclo.kits.ecoflex.EcoFlexCassette attribute),

57
cutter (moclo.kits.ecoflex.EcoFlexCassetteVector

attribute), 55
cutter (moclo.kits.ecoflex.EcoFlexDevice attribute), 58
cutter (moclo.kits.ecoflex.EcoFlexDeviceVector at-

tribute), 57
cutter (moclo.kits.ecoflex.EcoFlexEntry attribute), 54
cutter (moclo.kits.moclo.MoCloCassette attribute), 44
cutter (moclo.kits.moclo.MoCloCassetteVector at-

tribute), 42
cutter (moclo.kits.moclo.MoCloDeviceVector attribute),

44
cutter (moclo.kits.moclo.MoCloEntry attribute), 40
cutter (moclo.kits.moclo.MoCloEntryVector attribute),

39
cutter (moclo.kits.moclo.MoCloLevelMVector at-

tribute), 44
cutter (moclo.kits.moclo.MoCloLevelPEndLinker

attribute), 45
cutter (moclo.kits.moclo.MoCloLevelPVector attribute),

45
cutter (moclo.kits.moclo.MoCloProduct attribute), 38
cutter (moclo.kits.ytk.YTKCassette attribute), 67
cutter (moclo.kits.ytk.YTKCassetteVector attribute), 63
cutter (moclo.kits.ytk.YTKDeviceVector attribute), 68
cutter (moclo.kits.ytk.YTKEntry attribute), 62
cutter (moclo.kits.ytk.YTKEntryVector attribute), 61
cutter (moclo.kits.ytk.YTKProduct attribute), 59

D
Device (class in moclo.core.modules), 22
DeviceVector (class in moclo.core.vectors), 24
DuplicateModules (class in moclo.errors), 25

E
EcoFlexCassette (class in moclo.kits.ecoflex), 57
EcoFlexCassetteVector (class in moclo.kits.ecoflex),

55
EcoFlexCodingSequence (class in moclo.kits.ecoflex),

57

EcoFlexDevice (class in moclo.kits.ecoflex), 58
EcoFlexDeviceVector (class in moclo.kits.ecoflex), 57
EcoFlexEntry (class in moclo.kits.ecoflex), 54
EcoFlexPromoter (class in moclo.kits.ecoflex), 56
EcoFlexRBS (class in moclo.kits.ecoflex), 56
EcoFlexTag (class in moclo.kits.ecoflex), 57
EcoFlexTagLinker (class in moclo.kits.ecoflex), 56
EcoFlexTerminator (class in moclo.kits.ecoflex), 57
EmbeddedRegistry (class in moclo.registry.base), 20
Entry (class in moclo.core.modules), 22
EntryVector (class in moclo.core.vectors), 24

I
IllegalSite (class in moclo.errors), 25
InvalidSequence (class in moclo.errors), 25
is_valid() (moclo.core.modules.AbstractModule

method), 21
is_valid() (moclo.core.parts.AbstractPart method), 24
is_valid() (moclo.kits.cidar.CIDARCassetteVector

method), 51
is_valid() (moclo.kits.cidar.CIDAREntry method), 49
is_valid() (moclo.kits.cidar.CIDAREntryVector

method), 48
is_valid() (moclo.kits.cidar.CIDARProduct method),

47
is_valid() (moclo.kits.ecoflex.EcoFlexCassetteVector

method), 56
is_valid() (moclo.kits.ecoflex.EcoFlexEntry method),

54
is_valid() (moclo.kits.moclo.MoCloCassetteVector

method), 42
is_valid() (moclo.kits.moclo.MoCloEntry method), 40
is_valid() (moclo.kits.moclo.MoCloEntryVector

method), 40
is_valid() (moclo.kits.moclo.MoCloProduct method),

38
is_valid() (moclo.kits.ytk.YTKCassetteVector method),

63
is_valid() (moclo.kits.ytk.YTKEntry method), 62
is_valid() (moclo.kits.ytk.YTKEntryVector method),

61
is_valid() (moclo.kits.ytk.YTKProduct method), 59

M
MissingModule (class in moclo.errors), 25
moclo.core.modules
module, 20

moclo.core.parts
module, 24

moclo.core.vectors
module, 22

moclo.errors
module, 25

moclo.kits.cidar

74 Index

moclo Documentation, Release 0.4.7

module, 46
moclo.kits.ecoflex
module, 54

moclo.kits.moclo
module, 37

moclo.kits.plant
module, 46

moclo.kits.ytk
module, 58

moclo.record
module, 19

moclo.registry.base
module, 20

MoClo3U (class in moclo.kits.moclo), 43
MoClo3UTer (class in moclo.kits.moclo), 43
MoClo5U (class in moclo.kits.moclo), 43
MoClo5Uf (class in moclo.kits.moclo), 43
MoCloCassette (class in moclo.kits.moclo), 44
MoCloCassetteVector (class in moclo.kits.moclo), 41
MoCloCDS1 (class in moclo.kits.moclo), 43
MoCloCDS1ns (class in moclo.kits.moclo), 43
MoCloCDS2 (class in moclo.kits.moclo), 43
MoCloCDS2ns (class in moclo.kits.moclo), 43
MoCloCTag (class in moclo.kits.moclo), 43
MoCloDeviceVector (class in moclo.kits.moclo), 44
MoCloEndLinker (class in moclo.kits.moclo), 44
MoCloEntry (class in moclo.kits.moclo), 40
MoCloEntryVector (class in moclo.kits.moclo), 39
MocloError (class in moclo.errors), 25
MoCloGene (class in moclo.kits.moclo), 43
MoCloLevelMEndLinker (class in moclo.kits.moclo), 45
MoCloLevelMVector (class in moclo.kits.moclo), 44
MoCloLevelPEndLinker (class in moclo.kits.moclo), 45
MoCloLevelPVector (class in moclo.kits.moclo), 45
MoCloNTag (class in moclo.kits.moclo), 43
MoCloPro (class in moclo.kits.moclo), 43
MoCloPro5U (class in moclo.kits.moclo), 43
MoCloPro5Uf (class in moclo.kits.moclo), 43
MoCloProduct (class in moclo.kits.moclo), 38
MoCloSP (class in moclo.kits.moclo), 43
MoCloTer (class in moclo.kits.moclo), 43
module

moclo.core.modules, 20
moclo.core.parts, 24
moclo.core.vectors, 22
moclo.errors, 25
moclo.kits.cidar, 46
moclo.kits.ecoflex, 54
moclo.kits.moclo, 37
moclo.kits.plant, 46
moclo.kits.ytk, 58
moclo.record, 19
moclo.registry.base, 20

O
overhang_end() (moclo.core.modules.AbstractModule

method), 21
overhang_end() (moclo.core.vectors.AbstractVector

method), 23
overhang_end() (mo-

clo.kits.cidar.CIDARCassetteVector method),
51

overhang_end() (moclo.kits.cidar.CIDAREntry
method), 49

overhang_end() (moclo.kits.cidar.CIDAREntryVector
method), 48

overhang_end() (moclo.kits.cidar.CIDARProduct
method), 47

overhang_end() (mo-
clo.kits.ecoflex.EcoFlexCassetteVector
method), 56

overhang_end() (moclo.kits.ecoflex.EcoFlexEntry
method), 54

overhang_end() (mo-
clo.kits.moclo.MoCloCassetteVector method),
42

overhang_end() (moclo.kits.moclo.MoCloEntry
method), 41

overhang_end() (moclo.kits.moclo.MoCloEntryVector
method), 40

overhang_end() (moclo.kits.moclo.MoCloProduct
method), 38

overhang_end() (moclo.kits.ytk.YTKCassetteVector
method), 63

overhang_end() (moclo.kits.ytk.YTKEntry method), 62
overhang_end() (moclo.kits.ytk.YTKEntryVector

method), 61
overhang_end() (moclo.kits.ytk.YTKProduct method),

59
overhang_start() (mo-

clo.core.modules.AbstractModule method),
21

overhang_start() (moclo.core.vectors.AbstractVector
method), 23

overhang_start() (mo-
clo.kits.cidar.CIDARCassetteVector method),
51

overhang_start() (moclo.kits.cidar.CIDAREntry
method), 49

overhang_start() (mo-
clo.kits.cidar.CIDAREntryVector method),
48

overhang_start() (moclo.kits.cidar.CIDARProduct
method), 47

overhang_start() (mo-
clo.kits.ecoflex.EcoFlexCassetteVector
method), 56

overhang_start() (moclo.kits.ecoflex.EcoFlexEntry

Index 75

moclo Documentation, Release 0.4.7

method), 54
overhang_start() (mo-

clo.kits.moclo.MoCloCassetteVector method),
42

overhang_start() (moclo.kits.moclo.MoCloEntry
method), 41

overhang_start() (mo-
clo.kits.moclo.MoCloEntryVector method),
40

overhang_start() (moclo.kits.moclo.MoCloProduct
method), 38

overhang_start() (moclo.kits.ytk.YTKCassetteVector
method), 64

overhang_start() (moclo.kits.ytk.YTKEntry method),
62

overhang_start() (moclo.kits.ytk.YTKEntryVector
method), 61

overhang_start() (moclo.kits.ytk.YTKProduct
method), 59

P
placeholder_sequence() (mo-

clo.core.vectors.AbstractVector method),
23

placeholder_sequence() (mo-
clo.kits.cidar.CIDARCassetteVector method),
51

placeholder_sequence() (mo-
clo.kits.cidar.CIDAREntryVector method),
48

placeholder_sequence() (mo-
clo.kits.ecoflex.EcoFlexCassetteVector
method), 56

placeholder_sequence() (mo-
clo.kits.moclo.MoCloCassetteVector method),
42

placeholder_sequence() (mo-
clo.kits.moclo.MoCloEntryVector method),
40

placeholder_sequence() (mo-
clo.kits.ytk.YTKCassetteVector method),
64

placeholder_sequence() (mo-
clo.kits.ytk.YTKEntryVector method), 61

Product (class in moclo.core.modules), 22

R
reverse_complement() (moclo.record.CircularRecord

method), 20

S
structure() (moclo.core.modules.AbstractModule

class method), 21

structure() (moclo.core.parts.AbstractPart class
method), 24

structure() (moclo.core.vectors.AbstractVector class
method), 23

structure() (moclo.kits.cidar.CIDARCassetteVector
static method), 51

structure() (moclo.kits.cidar.CIDARDeviceVector
static method), 53

structure() (moclo.kits.cidar.CIDAREntry class
method), 49

structure() (moclo.kits.cidar.CIDAREntryVector static
method), 49

structure() (moclo.kits.cidar.CIDARProduct class
method), 47

structure() (moclo.kits.ecoflex.EcoFlexCassetteVector
static method), 56

structure() (moclo.kits.ecoflex.EcoFlexDeviceVector
static method), 57

structure() (moclo.kits.ecoflex.EcoFlexEntry class
method), 54

structure() (moclo.kits.moclo.MoCloCassetteVector
class method), 42

structure() (moclo.kits.moclo.MoCloEntry class
method), 41

structure() (moclo.kits.moclo.MoCloEntryVector
class method), 40

structure() (moclo.kits.moclo.MoCloLevelMEndLinker
class method), 45

structure() (moclo.kits.moclo.MoCloLevelMVector
class method), 44

structure() (moclo.kits.moclo.MoCloLevelPEndLinker
class method), 45

structure() (moclo.kits.moclo.MoCloLevelPVector
class method), 45

structure() (moclo.kits.moclo.MoCloProduct class
method), 38

structure() (moclo.kits.ytk.YTKCassetteVector class
method), 64

structure() (moclo.kits.ytk.YTKEntry class method),
62

structure() (moclo.kits.ytk.YTKEntryVector class
method), 61

structure() (moclo.kits.ytk.YTKProduct static
method), 59

T
target_sequence() (mo-

clo.core.modules.AbstractModule method),
21

target_sequence() (mo-
clo.core.vectors.AbstractVector method),
23

target_sequence() (mo-
clo.kits.cidar.CIDARCassetteVector method),

76 Index

moclo Documentation, Release 0.4.7

51
target_sequence() (moclo.kits.cidar.CIDAREntry

method), 50
target_sequence() (mo-

clo.kits.cidar.CIDAREntryVector method),
49

target_sequence() (moclo.kits.cidar.CIDARProduct
method), 47

target_sequence() (mo-
clo.kits.ecoflex.EcoFlexCassetteVector
method), 56

target_sequence() (moclo.kits.ecoflex.EcoFlexEntry
method), 55

target_sequence() (mo-
clo.kits.moclo.MoCloCassetteVector method),
43

target_sequence() (moclo.kits.moclo.MoCloEntry
method), 41

target_sequence() (mo-
clo.kits.moclo.MoCloEntryVector method),
40

target_sequence() (moclo.kits.moclo.MoCloProduct
method), 38

target_sequence() (moclo.kits.ytk.YTKCassetteVector
method), 64

target_sequence() (moclo.kits.ytk.YTKEntry method),
62

target_sequence() (moclo.kits.ytk.YTKEntryVector
method), 61

target_sequence() (moclo.kits.ytk.YTKProduct
method), 59

U
UnusedModules (class in moclo.errors), 26

Y
YTKCassette (class in moclo.kits.ytk), 67
YTKCassetteVector (class in moclo.kits.ytk), 63
YTKDeviceVector (class in moclo.kits.ytk), 68
YTKEntry (class in moclo.kits.ytk), 61
YTKEntryVector (class in moclo.kits.ytk), 60
YTKPart1 (class in moclo.kits.ytk), 64
YTKPart2 (class in moclo.kits.ytk), 64
YTKPart234 (class in moclo.kits.ytk), 67
YTKPart234r (class in moclo.kits.ytk), 67
YTKPart3 (class in moclo.kits.ytk), 65
YTKPart3a (class in moclo.kits.ytk), 65
YTKPart3b (class in moclo.kits.ytk), 65
YTKPart4 (class in moclo.kits.ytk), 65
YTKPart4a (class in moclo.kits.ytk), 65
YTKPart4b (class in moclo.kits.ytk), 66
YTKPart5 (class in moclo.kits.ytk), 66
YTKPart6 (class in moclo.kits.ytk), 66
YTKPart678 (class in moclo.kits.ytk), 67

YTKPart7 (class in moclo.kits.ytk), 66
YTKPart8 (class in moclo.kits.ytk), 66
YTKPart8a (class in moclo.kits.ytk), 66
YTKPart8b (class in moclo.kits.ytk), 67
YTKProduct (class in moclo.kits.ytk), 59

Index 77

	Concepts and Definitions
	Concepts
	Introduction
	Type II-S enzymes
	Golden Gate Assembly
	The MoClo system
	Hierarchy
	Types definition
	Assembly markers

	References

	Definitions
	Descriptive Theory
	Preliminary Definitions
	Genetic Alphabet
	Circular Sequences
	Restriction Enzymes
	Golden Gate Assembly

	Standard Modular Cloning System
	System Definition
	Modules
	Vectors
	Overhangs
	Standard Assembly

	Typed Modular Cloning System
	System Definition
	Types

	Library
	Installation
	PyPI + pip
	GitHub + pip

	Examples
	YTK integration vector
	Structure
	Loading parts
	Checking parts
	Creating the assembly
	Rendering the assembly sequence map
	Comparing the assembly to the expected vector

	Library Reference
	Record
	Registry
	Base class
	Implementations

	Modules
	Abstract
	Level -1
	Level 0
	Level 1
	Level 2

	Vectors
	Abstract
	Level -1
	Level 0
	Level 1

	Parts
	Abstract

	Errors
	Base classes
	Errors
	Warnings

	Record (moclo.record)
	Registry (moclo.registry.base)
	Modules (moclo.core.modules)
	Vectors (moclo.core.vectors)
	Parts (moclo.core.parts)
	Errors (moclo.errors)

	Changelogs
	moclo
	Unreleased
	redv0.4.7_ - 2021-11-08
	Changed

	redv0.4.6_ - 2019-07-25
	Changed

	v0.4.5 - 2019-02-22
	Fixed

	v0.4.4 - 2019-02-11
	Changed

	v0.4.3 - 2019-01-06
	Changed
	Added
	Documented

	v0.4.2 - 2018-08-16
	Fixed

	v0.4.1 - 2018-08-16
	Changed

	v0.4.0 - 2018-08-10
	Added

	v0.3.0 - 2018-08-07
	Added
	Changed
	Fixed

	v0.2.1 - 2018-07-27
	Added
	Documented

	v0.2.0 - 2018-07-24
	Added
	Changed
	Documented
	Fixed

	v0.1.0 - 2018-07-12

	moclo-cidar
	Unreleased
	Added
	Changed

	v0.4.0 - 2018-08-16
	Changed
	Documented

	v0.3.0 - 2018-08-07
	Changed
	Removed

	v0.2.0 - 2018-07-25
	Added
	Changed
	Documented

	v0.1.0 - 2018-07-12

	moclo-ecoflex
	Unreleased
	Fixed

	v0.3.1 - 2018-11-19
	Added
	Fixed

	v0.3.0 - 2018-08-16
	Changed
	Documented

	v0.2.0 - 2018-08-07
	Added
	Changed

	v0.1.0 - 2018-07-12

	moclo-moclo
	v0.1.0 - 2018-07-12

	moclo-plant
	v0.1.0 - 2018-07-12

	moclo-ytk
	Unreleased
	Changed
	Added

	v0.4.0 - 2018-08-16
	Changed
	Documented

	v0.3.0 - 2018-08-07
	Changed
	Documented

	v0.2.0 - 2018-07-24
	Added
	Changed

	v0.1.0 - 2018-07-12

	About
	Authors
	License

	Kits
	MoClo Kit
	Level -1
	Module
	Vector

	Level 0
	Module
	Vector
	Parts

	Level 1
	Module
	Vector
	Parts

	Level M
	Parts

	Level P
	Parts

	Plant Parts Kit
	CIDAR Kit
	Level -1
	Module
	Vector

	Level 0
	Module
	Vector
	Parts

	Level 1
	Module
	Vector

	Level 2
	Module

	EcoFlex Kit
	Level 0
	Module
	Vector
	Parts

	Level 1
	Module
	Vector

	Level 2
	Module

	Yeast ToolKit (YTK) / Pichia ToolKit (PTK)
	Level -1
	Module
	Vector

	Level 0
	Module
	Vector
	Parts
	Base Parts
	Composite

	Level 1
	Module
	Vector

	Indices and tables
	Python Module Index
	Index

