

MoClo

[image: Source] [https://github.com/althonos/moclo] [image: PyPI] [https://pypi.python.org/pypi/moclo] [image: Travis] [https://travis-ci.org/althonos/moclo/branches] [image: Docs] [https://moclo.readthedocs.io/] [image: Codecov] [https://codecov.io/gh/althonos/moclo] [image: Codacy] [https://www.codacy.com/app/althonos/moclo] [image: Format] [https://pypi.python.org/pypi/moclo] [image: License] [https://choosealicense.com/licenses/mit/]

The MoClo system is a standard for molecular cloning that relies on the Golden
Gate Assembly technique.

Concepts and Definitions

	Concepts

	Definitions

	Descriptive Theory

Library

	Installation

	Examples

	Library Reference

	Changelogs

	About

Kits

	MoClo Kit

	Plant Parts Kit

	CIDAR Kit

	EcoFlex Kit

	Yeast ToolKit (YTK) / Pichia ToolKit (PTK)

Indices and tables

	Index

	Module Index

	Search Page

Concepts

Introduction

The MoClo standard was first presented in the Weber et al., 2011 21364738
paper, as an attempt to standardize the process of assembling complex DNA
molecules from smaller genetic elements. It is inspired by two previous
standards:

	NOMAD 8855278, which proposed generic notions of modules and vectors,
as well as assembly using Type IIS enzymes. Modules can be combined in any
order, but are clone sequentially one module at a time.

	BioBrick 18410688, which defines parts with a stable structure: assembling
two parts together always gives a part with the same flanking restriction
sites.

The MoClo standard enhances both of these assembly standards by relying on the
Golden Gate Assembly, which allows single-step assembly of an arbitrary number
of modules into a vector. Furthermore, MoClo parts are flanked by stereotypical
overhangs, enforcing a particular assembly order, therefore allowing only the
desired contruct to be obtained.

Type II-S enzymes

Restriction enzymes are enzymes that are able to cut DNA at or near specific
recognition sites. Among those enzymes, Type IIS enzymes cut DNA out of the
sequence they recognize, at a defined distance. The cut can produce cohesive ends,
which can then recombine with other sequences sharing the complementary cohesive
ends, or blunt ends, which cannot recombine. The design of the cohesive ends
is of great importance when using Type II-S enzymes to do molecular cloning.

Golden Gate Assembly

The Golden Gate Assembly relies on Type II-S enzymes to assemble several DNA
sequences. The sequences are first cut by restriction enzymes, and then
assembled together using a T4 DNA ligase. These two steps can be repeated in
a single reaction tube using a thermo cycler, as the two enzymes typically do
not work at the same temperature. As standard Type II-S enzymes, such as BsaI
or BsmBI, create a 4-base-long cohesive end when cutting the DNA, there can be
as much as 256 fragments combined together in a deterministic way in a single
assembly, although in vivo the chemical properties of the nucleotides will
most likely prevent assemblies that large to succeed.

[image: ../_images/assembly.svg]
Example GoldenGate assembly of two modules in a vector using
BsaI [https://international.neb.com/products/r0535-bsai#Product%20Information].

The MoClo system

The MoClo system combines the idea of a standard part format from the BioBrick
standard, with the Golden Gate assembly protocol, allowing several modules to be
assembled in a vector at the same time.

Hierarchy

MoClo modules and vectors are divided into several levels, describing their
structural and transcriptional features:

	Level -1 modules are sequences that are not yet in a standardized backbone,
but can be assembled in a dedicated vector to form a level 0 module. They are
most of the time obtained via oligonucelotide synthesis, or PCR.

	Level 0 modules are standardized genetic elements: promoter, 5’ UTR,
signal sequence, CDS, terminator.

	Level 1 modules are transcription units, formed by a combination of Level 0
modules, and are able to express proteins

	Level 2 modules are multigenic units, containing several transcription units,
and are able to express many genes at onces.

Furthermore, the enzyme used during the Golden Gate Assembly depends on the
assembly level. Alternating between the two enzymes makes it possible for an
infinite number of genes to be inserted in the same plasmid, although biological
limits are reached in vivo.

Types definition

Although transcription units can be assembled in any possible order in their
destination vectors, level 0 modules must be assembled in a specific order to
obtain a functional genetic construct. In order to enforce the assembly order,
parts are flanked by fusion sites with standard sequences, which are unique to
the type of the part. A valid level 1 module is obtained by assembling a part
of each type into the destination vector.

Assembly markers

Once the Golden Gate Assembly is finished, the obtained constructs can be
amplified using a bacterial host. After transformation, bacteria are selected
using two different factors:

	An antibiotic for which a resistance cassette is only availble on the vector,
but not on any module: this allows selecting all the bacterias that received
the vector plasmid

	A marker for a dropout reporter gene that can only be found in the vector but
not in the final construct (such as the gfp or lacZ genes).

This double screening makes it possible to select only the bacterias that
contain the expected construct, discarding the others, and retrieving the
assembled plasmid through a miniprep.

References

	8855278

	Rebatchouk, D, N Daraselia, and J O Narita.
‘NOMAD: A Versatile Strategy for in Vitro DNA Manipulation Applied to Promoter Analysis and Vector Design.’
Proceedings of the National Academy of Sciences of the United States of America 93, no. 20 (1 October 1996): 10891–96.
pmid:8855278 [https://www.ncbi.nlm.nih.gov/pubmed/8855278]

	18410688

	Shetty, Reshma P, Drew Endy, and Thomas F Knight.
‘Engineering BioBrick Vectors from BioBrick Parts’.
Journal of Biological Engineering 2 (14 April 2008): 5.
doi:10.1186/1754-1611-2-5 [https://doi.org/10.1186/1754-1611-2-5]

	21364738

	Weber, Ernst, Carola Engler, Ramona Gruetzner, Stefan Werner, and Sylvestre Marillonnet.
‘A Modular Cloning System for Standardized Assembly of Multigene Constructs’.
PLOS ONE 6, no. 2 (18 February 2011): e16765.
doi:10.1371/journal.pone.0016765 [https://doi.org/10.1371/journal.pone.0016765]

Definitions

	Molecular Cloning
	Molecular cloning is the process of assembling together fragments of DNA to
obtain a more complex molecule, often presenting genetic features of interest.
It describes a process, not a technique

	GoldenGate
	GoldenGate is a molecular cloning technique that uses Type IIS restriction
enzymes to cut and assemble DNA sequences into recombinant DNA molecules.
It describes a technique

	Modular Cloning
	A Modular Cloning system uses the GoldenGate technique to assemble several
genetic modules of a given level into a vector of the same level. It can
also define types, which are modules or vectors with specific overhangs
that are collections of sequences that are functionnally and structuraly
equivalent to each other.

	MoClo
	MoClo is originally the name of a modular cloning system published by the
Marillonnet Lab which defines a set of vectors and modules to be used to
assemble multigenic expression devices for plants. An extension was later
provided by the same team proposing potentially infinite assemblies multigenic
expression devices with the addition of two levels.
Other modular cloning systems, inspired by them, were published under the
name of MoClo (such as MoClo YTK, MoClo CIDAR, MoClo EcloFlex, etc.). In
this work, the original toolkit is named MoClo IG, and MoClo is used as an
abbreviation of modular cloning as defined above.

Descriptive Theory

This section introduces the theory that was developed to support the software
implementation of the modular cloning logic. It introduces mathematical
definitions of biological concepts, relying on particular on
formal language theory [https://en.wikipedia.org/wiki/Formal_language].

	Preliminary Definitions
	Genetic Alphabet

	Circular Sequences

	Restriction Enzymes

	Golden Gate Assembly

	Standard Modular Cloning System
	System Definition

	Modules

	Vectors

	Overhangs

	Standard Assembly

	Typed Modular Cloning System
	System Definition

	Types

Preliminary Definitions

Genetic Alphabet

Definition

A genetic alphabet \(\langle \Sigma,\sim \rangle\) is an algebraic structure on an alphabet \(\Sigma\)
with a unary operation \(\sim\) verifying the following properties:

	\(\sim: \Sigma^\star \to \Sigma^\star\) is a bijection

	\(\forall x \in \Sigma^\star, \lvert \widetilde{x} \rvert = \lvert x \rvert\)

	\(\forall (x, y) \in (\Sigma^\star)^2, \quad \widetilde{x \cdot y} = \widetilde{\,y\,} \cdot \widetilde{\,x\,}\)

Note

To stay consistent with the biology lexicon, we will be referring to a word
over a genetic alphabet as a sequence, only explicitly naming a mathematical
sequence when needed to.

Examples

	\((\{A, T, G, C\}, \sim)\) is the standard genetic alphabet, with
\(\sim\) defined as \(\widetilde{A \cdot G} = C \cdot T\).

	\((\{A, T, G, C, d5SICS, dNaM\}, \sim)\) is the genetic alphabet using the
unnatural base pairs from Malyshev et al., Nature 2014 [https://www.nature.com/articles/nature13314],
with \(\sim\) defined as \(\widetilde{A \cdot G \cdot d5ICS} = dNaM \cdot C \cdot T\)

Circular Sequences

Definition

A circular word over an alphabet \(\Sigma\) is a finite word with no end. It
can be noted \(w^{(c)}\), where \(w\) is a finite word of \(\Sigma^\star\).

Definition: Cardinality

Given a circular sequence \(s^{(c)}\), the cardinal of \(s^{(c)}\),
noted \(\lvert s^{(c)} \rvert\), is defined as:

\[\lvert s^{(c)} \rvert = \lvert s \rvert\]

Definition: Equality

Given two sequences \(a^{(c)}\) and \(b^{(c)}\) with

\[\begin{split}\begin{array}{lllll}
a &=& a_0 \cdot a_1 \cdot \, \dots \, \cdot a_m & \in \Sigma^{(m)}, & m \in \mathbb{N} \\
b &=& b_0 \cdot b_1 \cdot \, \dots \, \cdot b_n & \in \Sigma^{(n)}, & n \in \mathbb{N}
\end{array}\end{split}\]

let the \(=\) relation be defined as:

\[a^{(c)} = b^{(c)} \iff \exists k \in \mathbb{N}, a = \sigma^{k}(b)\]

where \(\sigma\) is the circular shift defined as:

\[\begin{split}\begin{array}l
\forall u = u_1 \cdot u_2 \cdot\,\dots\,\cdot u_k \in \Sigma^k, \\
\quad \quad \sigma(u_1 \cdot u_2 \cdot\,\dots\,\cdot u_k) =
u_k \cdot u_1 \cdot u_2 \cdot \, \dots \, \cdot u_{k-1}
\end{array}\end{split}\]

Property

\(=\) is a relation of equivalence over \(\Sigma^{(c)}\)

Demonstration

Given the set of circular sequences \(\Sigma^{(c)}\) using an alphabet
\(\Sigma\):

	Reflexivity:

\[s^{(c)} \in \Sigma^{(c)} \implies s = Id(s) = \sigma^{0}(s) \implies s^{(c)} = s^{(c)}\]

	Symetry:
\(\forall s_1^{(c)}, s_2^{(c)} \in \Sigma^{(c)} \times \Sigma^{(c)}\):

\[\begin{split}\begin{array}{lll}
s_1^{(c)} = s_2^{(c)}
&\iff& \exists k \in \mathbb{N}, s_1 = \sigma^k(s_2) \\
&\iff& \exists k \in \mathbb{N}, s_2 = \sigma^{-k}(s_1) \\
&\iff& \exists k \in \mathbb{N}, s_2 = \sigma^{\lvert s_1 \rvert - k}(s_1) \\
&\iff& s_2^{(c)} = s_1^{(c)}
\end{array}\end{split}\]

	Transitivity:
\(\forall s_1, s_2, s_3 \in \Sigma^{(c)} \times \Sigma^{(c)} \times \Sigma^{(c)}\)

\[\begin{split}\begin{array}{lll}
\begin{cases}
s_1^{(c)} = s_2^{(c)} \\
s_2^{(c)} = s_3^{(c)}
\end{cases}
&\implies& \begin{cases}
\exists k_1 \in \mathbb{N}, s_1 = \sigma^{k_1}(s_2) \\
\exists k_2 \in \mathbb{N}, s_2 = \sigma^{k_2}(s_3)
\end{cases} \\
&\implies&
\exists k_1, k_2 \in \mathbb{N}^2, s_1 = \sigma^{k_1} \circ \sigma^{k_2}(s_3) \\
&\implies&
\exists k_1, k_2 \in \mathbb{N}^2, s_1 = \sigma^{k_1 + k_2}(s_3) \\
&\implies& s_1^{(c)} = s_3^{(c)}
\end{array}\end{split}\]

Definition: Automaton acception

Given a finite automaton \(A\) over an alphabet \(\Sigma\), and
\(u^{(c)}\) a sequence of \(\Sigma^{(c)}\), \(A\) accepts
\(u^{(c)}\) iff there exist a sequence \(v\) of \(\Sigma^\star\)
such that:

	\(v^{(c)} = u^{(c)}\)

	\(A\) accepts \(v\)

Restriction Enzymes

Definition

Given a genetic alphabet \(\langle \Sigma, \sim \rangle\), a restriction enzyme \(e\) can
be defined as a tuple \((S, n, k)\) where:

	\(S \subseteq \Sigma^\star\) is the finite set of recognition sites
that \(e\) binds to

	\(\forall (s, s\prime) \in S^2, \lvert s \rvert = \lvert s\prime \rvert\)

	\(n \in \mathbb{Z}\) is the cutting offset between the last nucleotides
of the site and the first nucleotide of the restriction cut

	\(k \in \mathbb{Z}\) is the overhang length:

	\(k = 0\) if the enzyme produces blunt cuts

	\(k > 0\) if the enzyme produces \(5\prime\) overhangs

	\(k < 0\) if the enzyme produce \(3\prime\) overhangs

	\(\forall (s, s\prime) \in S^2, \lvert s \rvert = \lvert s\prime \rvert\)

	\(n \ge - \lvert s \rvert, s \in S\)

Note

This definition only covers single-cut restriction enzymes found in vivo,
but we don’t need to cover the case of double-cut restriction enzymes since
they are not used in modular cloning.

Definition: Enzyme types

A restriction enzyme \((S, n, k)\) is:

	a blunt cutter is \(k = 0\)

	an asymmetric cutter if \(k \ne 0\)

	a Type IIS enzyme if:

	\(n \ge 0\)

	\(\forall s \in S, s \ne \overline{s}\)

Golden Gate Assembly

Definition

An assembly is a function of \(\mathcal{P}(\Sigma^\star \cup \Sigma^{(c)}) \times \mathcal{P}(E)\)
to \(\mathcal{P}(\Sigma^\star \cup \Sigma^{(c)})\), which to a set
of distinct sequences \(\{d_1, \dots, d_m\}\) and a set of restriction
enzymes \(\{e_1, \dots, e_n\}\) associates the set of digested/ligated sequences
\(A = \{a_1, \dots a_k\}\).

The notation for an assembly is:

\[d_1 + \dots + d_m \xrightarrow{\quad e_1, \dots, e_n \quad} a_1 + \dots + a_k\]

Standard Modular Cloning System

System Definition

Definition

Given a genetic alphabet \(\langle \Sigma, \sim \rangle\), a Modular
Cloning System \(S\) is defined as a mathematical sequence

\[(M_l,\ V_l,\ e_l)_ {\ l\ \ge -1}\]

where:

	\(M_l \subseteq \Sigma^\star \cup \Sigma^{(c)}\) is the set of modules
of level \(l\)

	\(V_l \subseteq \Sigma^{(c)}\) is the set of vectors of level \(l\)

	\(e_l \subseteq E\) is the finite, non-empty set of asymmetric,
Type IIS restriction enzymes of level \(l\)

Definition: \(k\)-cyclicity

A Modular Cloning System \((M_l, V_l, e_l)_ {l \ge -1}\) is said to
be \(k\)-cyclic after a level \(\lambda\) if:

\[\begin{split}\begin{array}{ll}
\exists k \in N^\star, & \\
\forall l \ge \lambda, & \\
& \begin{cases}
M_{l+k} \subseteq M_l \\
V_{l+k} \subseteq V_l \\
e_{l+k} \subseteq e_l
\end{cases}
\end{array}\end{split}\]

Definition: \(\lambda\)-limit

A Modular Cloning System \((M_l, V_l, e_l)_ {l \ge -1}\) is said to
be \(\lambda\)-limited if:

\[\forall l \ge \lambda,
M_l = \emptyset,
V_l = \emptyset,
e_l = \emptyset\]

Modules

Definition

For a given level \(l\), \(M_l\) is defined as the set of modules \(m \in \Sigma^\star \cup \Sigma^{(c)}\)
for which:

\[\begin{split}\begin{array}{l}
\exists ! (S, n, k) \in e_l, \\
\exists ! (S^\prime, n^\prime, k^\prime) \in e_l, \\
\exists ! (s, s^\prime) \in S \times S^\prime, \\
\exists ! (x, y, o_5, o_3) \in (\Sigma^\star)^4, \\
\\
\quad \exists ! t \in \Sigma^\star,
\left\{ \begin{array}{lll}
\exists ! b \in \Sigma^\star,\ & m = (s \cdot x \cdot o_5 \cdot t \cdot o_3 \cdot y \cdot \widetilde{s^\prime} \cdot b)^{(c)}, & \text{ if } m \in \Sigma^{(c)}\\
\exists ! u, v \in (\Sigma^\star)^2, & m = u \cdot s \cdot x \cdot o_5 \cdot t \cdot o_3 \cdot y \cdot \widetilde{s^\prime} \cdot v, & \text{ if } m \not \in \Sigma^{(c)}
\end{array} \right.
\end{array}\end{split}\]

with:

	\(|x| = n\)

	\(|y| = n^\prime\)

	\(|o_5| = abs(k)\)

	\(|o_3| = abs(k^\prime)\)

Note

This decomposition is called the canonic module decomposition, where:

	\(t\) is the target sequence of the module \(m\)

	\(b\) is the backbone of the module \(m\) (if \(m\) is circular)

	\(u\) and \(v\) are called the prefix and suffix of the module \(m\) (if \(m\) is not circular)

	\(o_5\) and \(o_3\) are the upstream and downstream overhangs respectively.

Property

\(\forall \langle \Sigma, \sim \rangle\), \(\forall l \ge -1\),
\(\forall e_l \subset E\):

\[M_l \text{ is a rational language }\]

Demonstration

Let there be a genetic alphabet \(\langle \Sigma, \sim \rangle\)
and a Modular Cloning System \((M_l, V_l, e_l)_ {l \ge -1}\) over
it.

\(\forall l \ge -1\), the regular expression:

\[\begin{split}\begin{array}l
\bigcup_{\begin{array}l(S, n, k) \in e_l \\ (S\prime, n\prime, k\prime) \in e_l\end{array}}
\Sigma^\star \cdot S \cdot \Sigma^n \cdot \Sigma^{abs(k)} \cdot \Sigma^\star \cdot \overline{(S | S^\prime)} \cdot \Sigma^\star \cdot \Sigma^{abs(k\prime)} \cdot \Sigma^{n\prime} \cdot \widetilde{\,S\prime\,} \cdot \Sigma^\star \\
\end{array}\end{split}\]

where:

	\(\star\) is the Kleene star [https://en.wikipedia.org/wiki/Kleene_star].

	\(\widetilde{S} = \{\widetilde{s}, s \in S\}\) (reverse complementation operator).

	\(\overline{S} = \{w \in \Sigma^\star, w \not \in S\}\) (complement [https://en.wikipedia.org/wiki/Complement_(set_theory)] operator).

	\(S | S^\prime = S \cup S^\prime\) (alternation [https://en.wikipedia.org/wiki/Alternation_(formal_language_theory)] operator).

matches a sequence \(m \in \Sigma^\star \cup \Sigma^{(c)}\) if and only if
\(m \in M_l\).

\(M_l\) is regular, so given Kleene’s Theorem, \(M_l\) is rational.

Vectors

Definition

For a given level \(l\), \(V_l\) is defined as the set of vectors \(v \in \Sigma^{(c)}\)
for which:

\[\begin{split}\begin{array}{l}
\exists ! (S, n, k) \in e_l, \\
\exists ! (S^\prime, n^\prime, k^\prime) \in e_l, \\
\exists ! (s, s^\prime) \in S \times S^\prime, \\
\exists ! (x, y, o_5, o_3) \in (\Sigma^\star)^4, \\
\\
\quad \exists ! (b, p) \in (\Sigma^\star)^2,
\exists ! b \in \Sigma^\star,\ v = (o_3 \cdot b \cdot o_5 \cdot y \cdot \widetilde{s} \cdot p \cdot s\prime \cdot x)^{(c)} \\
\end{array}\end{split}\]

with:

	\(|x| = n\)

	\(|y| = n^\prime\)

	\(|o_5| = abs(k)\)

	\(|o_3| = abs(k^\prime)\)

	\(o_3 \ne o_5\)

Note

This decomposition is called the canonic vector decomposition, where:

	\(p\) is the placeholder sequence of the vector \(v\)

	\(b\) is the backbone of the vector \(v\)

	\(o_3\) and \(o_5\) are the upstream and downstream overhangs respectively.

Overhangs

By definition, every valid level \(l\) module and vector only have a single canonic
decomposition where they have unique \(o_5\) and \(o_3\) overhangs. As such,
let the function \(up\) (resp. \(down\)) be defined as the function which:

	to a module \(m\) associates the word \(o_5\) (resp. \(o_3\)) from its
canonic module decomposition

	to a vector \(v\) associates the word \(o_3\) (resp. \(o_5\)) from its
canonic vector decomposition.

Standard Assembly

Definition: Standard MoClo Assembly

Given an assembly of level \(l\), where \(m_1, \dots, m_k \in M_l^k, v \in V_l\):

\[a:\quad m_1 + \dots + m_k \xrightarrow{\quad e_l \quad} A \subset (\Sigma^\star \cup \Sigma^{(c)})\]

and the partial order \(le\) over \(S = \{m_1, \dots, m_k\}\) defined as:

\[\begin{split}\begin{array}{l}
\forall x, y \in S^2, \\
\quad x \le y \iff \begin{cases}
x = y & \\
down(x) = up(y) & \text{ if } x \ne y\\
\exists z \in S \backslash \{x, y\}, down(x) = up(z), \ z \le y & \text{ if } x \ne y \text{ and } down(x) \ne up(y)
\end{cases}
\end{array}\end{split}\]

then a chain \(\langle S\prime, \le \rangle \subset \langle S, \le \rangle\) is
an insert if:

\[\begin{split}\begin{cases}
v \le min(S^\prime) \\
max(S^\prime) \le v
\end{cases}
\iff
\begin{cases}
down(v) = up(min(S^\prime)) \\
up(v) = down(max(S^\prime))
\end{cases}\end{split}\]

\(a\) is:

	invalid if \(\langle S, \le \rangle\) is an antichain or \(\langle S, \ge \rangle\)
has no insert.

	valid if \(\langle S, \le \rangle\) has at least one insert.

	ambiguous if \(\langle S, \le \rangle\) has more than one insert.

	unambiguous if \(\langle S, \le \rangle\) has exactly one insert.

	complete if \(\langle S, \le \rangle\) is an insert.

Corollary

If an assembly \(a\) is complete, then there exist a permutation
\(\pi\) of \([\![1, k]\!]\) such that:

\[m_{\pi(1)} \le m_{\pi(2)} \le \dots \le m_{\pi(k-1)} \le m_{\pi(k)}\]

and:

\[\begin{split}\begin{array}{lll}
up(m_{\pi(1)}) &=& down(v) \\
down(m_{\pi(k)}) &=& up(v)
\end{array}\end{split}\]

Property: Uniqueness of the cohesive ends

If an assembly

\[m_1 + \dots + m_k \xrightarrow{\quad e_l \quad} A \subset (\Sigma^\star \cup \Sigma^{(c)})\]

is unambiguous and complete, then \(\forall i \in [\![1, k]\!]\),

\[\begin{split}\left\{
\begin{array}{llll}
up(m_i) &\ne& down(m_i)& \\
up(m_i) &\ne& up(m_j), & j \in [\![1, k]\!] \backslash \{i\} \\
down(m_i) &\ne& down(m_j), & j \in [\![1, k]\!] \backslash \{i\} \\
\end{array}
\right .\end{split}\]

Demonstration

Let there be an unambiguous complete assembly

\[a:\quad m_1 + \dots + m_k \xrightarrow{\quad e_l \quad} A\]

	\(up(m_i) \ne down(m_i)\)

Let’s suppose that \(\exists i \in [\![1, k]\!]\) such that

\[up(m_i) = down(m_i)\]

then \(\langle \{m_1, \dots, m_k\} \backslash \{m_i\}, \le \rangle\)
is also an insert, which cannot be since \(a\) is complete.

	\(up(m_i) \ne up(m_j)\)

Let’s suppose that \(\exists (i, j) \in [\![1, k]\!]^2\) such that

\[up(m_i) = up(m_j)\]

Since the \(a\) is complete, there exists \(pi\) such that

\[m_{\pi(1)} \le m_{\pi(2)} \le \dots \le m_{\pi(k-1)} \le m_{\pi(k)}\]

and since \(a\) is unambiguous, \(\langle \{m_1, \dots, m_k\}, \le \rangle\)
is the only insert.

	\(down(m_i) \ne down(m_j)\)

TODO

Property: Uniqueness of the assembled plasmid

If an assembly

\[m_1 + \dots + m_k \xrightarrow{\quad e_l \quad} A \subset (\Sigma^\star \cup \Sigma^{(c)})\]

is unambiguous, then

\[A \cap \Sigma^{(c)} = \{p\}\]

with

\[p = \left(up(v) \cdot b \cdot up(m_{\pi(1)}) \cdot t_{\pi(1)} \cdot \, \dots \, \cdot up(m_{\pi(n)}) \cdot t_{\pi(n)} \right) ^{(c)}\]

(\(n \le k\), \(n = k\) if \(a\) is complete).

Demonstration

TODO

Typed Modular Cloning System

System Definition

Definition

Given a genetic alphabet \(\langle \Sigma, \sim \rangle\), a
Typed Modular Cloning System \(S\) is defined as a mathematical
sequence

\[(M_l,\ V_l,\ \mathcal{M}_l,\ \mathcal{V}_l,\ e_l)_ {\ l\ \ge -1}\]

where:

	\((M_l, V_l, e_l)_{l \ge -1}\) is a standard Modular Cloning System

	\(\mathcal{M}_l \subseteq \mathcal{P}(M_l) \to \mathcal{P}(M_l)\)
is the set of module types of level \(l\)

	\(\mathcal{V}_l \subseteq \mathcal{P}(V_l) \to \mathcal{P}(V_l)\)
is the set of vector types of level \(l\)

Types

Definition

\(\forall l \ge -1\), we define types using their signatures (i.e. the
sets of upstream and downstream overhangs of elements using this type):

\[\begin{split}\begin{array}{ll}
\forall t \in \mathcal{M}_l,& \begin{cases}
Up(t) &= \bigcup_{m \in t(M_l)} \{ up(m) \} \\
Down(t) &= \bigcup_{m \in t(M_l)} \{ down(m) \}
\end{cases} \\
\forall t \in \mathcal{V}_l,& \begin{cases}
Up(t) &= \bigcup_{v \in t(V_l)} \{ up(v) \} \\
Down(t) &= \bigcup_{v \in t(V_l)} \{ down(v) \}
\end{cases}
\end{array}\end{split}\]

Corollary

\(\forall l \ge -1\),

\[\begin{split}\begin{array}{lll}
\forall t \in \mathcal{M}_l,&\ t(M_l) &= \{ m \in M_l\ |\ up(m) \in Up(t),\ down(m) \in Down(t) \} \\
\forall t \in \mathcal{V}_l,&\ t(V_l) &= \{ v \in V_l\ |\ up(v) \in Up(t),\ down(v) \in Down(t) \}
\end{array}\end{split}\]

Property: Structural equivalence of module types

Given a valid (resp. unambiguous) (resp. complete) assembly

\[m_1 + \dots + m_k + v \xrightarrow{e_l} A \subset (\Sigma^\star \cup \Sigma^{(c)})\]

then if there exist \(t \in \mathcal{M}_l\) such that

\[\begin{split}\begin{cases}
\lvert Up(t) \rvert = \lvert Down(t) \rvert = 1 \\
m_1 \in t(M_l)
\end{cases}\end{split}\]

then \(\forall m_1\prime \in t(M_l)\),

\[m_1\prime + \dots + m_k + v \xrightarrow{e_l} A \subset (\Sigma^\star \cup \Sigma^{(c)})\]

is valid (resp. unambiguous) (resp. complete).

Installation

The moclo module is designed to be modular, and as such, you only need to
install whatever functionalities you are willing to use. Packages are distributed
on PyPI, and it is advised to use pip to install them. See the
pip documentation [https://pip.pypa.io/en/stable/installing/] to get pip if
it is not installed on your system.

Commands below use pip in user mode: the packages will be installed in a
user-dependent location, and no additional permissions are needed. If for some
reason you need a system-wide setup, remove the --user flag. Installing in
user-mode should be prefered to avoid dependency issues, in particular when on
an OS which provides a package manager (such as aptitude on Debian, or even
homebrew on Mac OSX).

PyPI + pip [image: PyPI] [https://pypi.python.org/pypi/moclo]

To download the latest releases from the Python Package Index:

$ pip install --user moclo moclo-ytk moclo-cidar moclo-ecoflex

GitHub + pip [image: Travis] [https://travis-ci.org/althonos/moclo]

To download the development version from the source repository, you can specify
a subfolder in the installation command and directly install it:

$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-ytk
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-cidar
$ pip install --user git+https://github.com/althonos/moclo#subdirectory=moclo-ecoflex

Check the CI build is passing, or else you may be installing a broken version of
the library !

Examples

This page contains examples in Python code, generated from Jupyter notebooks
with nbsphinx.

	Assembling the YTK integration vector

YTK integration vector

In this example, we will be using the moclo library as well as the moclo-ytk extension kit to generate the pre-assembled YTK integration vector (pYTK096) from the available YTK parts, as described in the *Lee et al.* paper [https://doi.org/10.1021/sb500366v]

Structure

The list of parts, as well as the vector structure, can be found in the Supporting Table S1 from the Lee et al. supplementary materials:

[image: image0]

Loading parts

We’ll be loading each of the desired parts from the moclo-ytk registry. It is generated from the GenBank distributed with the YTK kits. They can be found on the AddGene YTK page [https://www.addgene.org/kits/moclo-ytk/#protocols-and-resources].

[2]:

from moclo.registry.ytk import YTKRegistry
registry = YTKRegistry()

vector = registry['pYTK090'].entity # Part 8a
modules = [registry['pYTK008'].entity, # Part 1
 registry['pYTK047'].entity, # Part 234r
 registry['pYTK073'].entity, # Part 5
 registry['pYTK074'].entity, # Part 6
 registry['pYTK086'].entity, # Part 7
 registry['pYTK092'].entity] # Part 8b

Checking parts

We can use dna_features_viewer to visualize your records before proceeding (for readability purposes, we’ll show the records as linear although they are plasmids):

[3]:

import itertools
import dna_features_viewer as dfv
import matplotlib.pyplot as plt

translator = dfv.BiopythonTranslator([lambda f: f.type != 'source'])
plt.figure(1, figsize=(24, 10))
for index, entity in enumerate(itertools.chain(modules, [vector])):
 ax = plt.subplot(2, 4, index + 1)
 translator.translate_record(entity.record).plot(ax)
 plt.title(entity.record.id)
plt.show()

[image: ../_images/examples_ytk-vector_6_0.png]

Creating the assembly

We use the Part 8a as our base assembly vector, and then assemble all the other parts into that vector:

[4]:

assembly = vector.assemble(*modules)

Rendering the assembly sequence map

When creating an assembly, corresponding regions of the obtained sequence will be annotated with the ID of the sequence they come from. We build a simple translator to color the different parts of the plasmid like in the original paper.

With the translator ready, we can display the pre-assembled integration vector assembled by moclo:

[6]:

vec_translator = IntegrationVectorTranslator([lambda f: f.type == 'source'])
vec_translator.translate_record(assembly, dfv.CircularGraphicRecord).plot(figure_width=8)
plt.show()

[image: ../_images/examples_ytk-vector_12_0.png]

Comparing the assembly to the expected vector

Hopefully the obtained assembly should look like the pYTK096 plasmid, distributed with the official YTK parts:

[7]:

plt.figure(3, figsize=(24, 10))

ax = plt.subplot(2, 1, 1)
translator.translate_record(assembly).plot(ax)
plt.title('Assembly')

ax = plt.subplot(2, 1, 2)
translator.translate_record(registry['pYTK096'].entity.record).plot(ax)
plt.title('Expected')

plt.show()

[image: ../_images/examples_ytk-vector_14_0.png]

[]:

Library Reference

Record (moclo.record)

	CircularRecord

	A derived SeqRecord that contains a circular DNA sequence.

Registry (moclo.registry.base)

	Item

	A uniquely identified record in a registry.

	AbstractRegistry

	An abstract registry holding MoClo plasmids.

	CombinedRegistry

	A registry combining several registries into a single collection.

	EmbeddedRegistry

	An embedded registry, distributed with the library source code.

Modules (moclo.core.modules)

	AbstractModule

	An abstract modular cloning module.

	Entry

	A level 0 module, often obtained from the official toolkits plamisds.

	Cassette

	A level 1 module, also refered as a Transcriptional Unit.

	Device

	A level 2 module, also refered as a Multigene plasmid.

Vectors (moclo.core.vectors)

	AbstractVector

	An abstract modular cloning vector.

	EntryVector

	Level 0 vector.

	CassetteVector

	Level 1 vector.

	DeviceVector

	Level 2 vector.

Parts (moclo.core.parts)

	AbstractPart

	An abstract modular cloning part.

Errors (moclo.errors)

Base classes

	MocloError

	Base class for all MoClo-related exceptions.

	AssemblyError

	Assembly-specific run-time error.

	AssemblyWarning

	Assembly-specific run-time warning.

Errors

	DuplicateModules

	Several modules share the same overhangs.

	InvalidSequence

	Invalid sequence provided.

	IllegalSite

	Sequence with illegal site provided.

	MissingModule

	A module is missing in the assembly.

Warnings

	UnusedModules

	Not all modules were used during assembly.

Record

	
class moclo.record.CircularRecord(SeqRecord)

	A derived SeqRecord that contains a circular DNA sequence.

It handles the in operator as expected, and removes the implementation
of the + operator since circular DNA sequence do not have an end to
append more nucleotides to. In addition, it overloads the >> and <<
operators to allow rotating the sequence and its annotations, effectively
changing the 0 position.

See also

Bio.SeqRecord.SeqRecord documentation on the Biopython wiki [https://biopython.org/wiki/SeqRecord].

	
__add__(other)

	Add another sequence or string to this sequence.

Since adding an arbitrary sequence to a plasmid is ambiguous (there is
no sequence end), trying to add a sequence to a CircularRecord
will raise a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	
__contains__(char)

	Implement the in keyword, searches the sequence.

	
__getitem__(index)

	Return a sub-sequence or an individual letter.

The sub-sequence is always returned as a SeqRecord, since it is
probably not circular anymore.

	
__init__(seq, id='<unknown id>', name='<unknown name>', description='<unknown description>', dbxrefs=None, features=None, annotations=None, letter_annotations=None)

	Create a new CircularRecord instance.

If given a SeqRecord as the first argument, it will simply copy all
attributes of the record. This allows using Bio.SeqIO.read to open
records, then loading them into a CircularRecord.

	
__lshift__(index)

	Rotate the sequence counter-clockwise, preserving annotations.

	
__radd__(other)

	Add another sequence or string to this sequence (from the left).

Since adding an arbitrary sequence to a plasmid is ambiguous (there is
no sequence end), trying to add a sequence to a CircularRecord
will raise a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	
__rshift__(index)

	Rotate the sequence clockwise, preserving annotations.

	
reverse_complement(id=False, name=False, description=False, features=True, annotations=False, letter_annotations=True, dbxrefs=False)

	Return a new CircularRecord with reverse complement sequence.

Registry

Base class

	
class moclo.registry.base.AbstractRegistry(*args, **kwds)

	An abstract registry holding MoClo plasmids.

Implementations

	
class moclo.registry.base.CombinedRegistry

	A registry combining several registries into a single collection.

	
__init__()

	

	
class moclo.registry.base.EmbeddedRegistry(*args, **kwds)

	An embedded registry, distributed with the library source code.

Records are stored within a GZip compressed Tar archive, using standard
annotations to allow retrieving features easily.

Modules

Moclo module classes.

A module is a sequence of DNA that contains a sequence of interest, such as a
promoter, a CDS, a protein binding site, etc., organised in a way it can be
combined to other modules to create an assembly. This involves flanking that
target sequence with Type IIS restriction sites, which depend on the level of
the module, as well as the chosen MoClo protocol.

Abstract

	
class moclo.core.modules.AbstractModule(object)

	An abstract modular cloning module.

	
cutter

	the enzyme
used to cut the target sequence from the backbone plasmid during
Golden Gate assembly.

	Type

	RestrictionType

	
__init__(record)

	

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Level -1

	
class moclo.core.modules.Product(AbstractModule)

	A level -1 module, often obtained as a PCR product.

Modules of this level are the lowest components of the MoClo system, but
are not practical to work with until they are assembled in a standard
vector to obtain entries.

Level 0

	
class moclo.core.modules.Entry(AbstractModule)

	A level 0 module, often obtained from the official toolkits plamisds.

Entries are assembled from products into a standard vector suitable for
selection and storage.

Level 1

	
class moclo.core.modules.Cassette(AbstractModule)

	A level 1 module, also refered as a Transcriptional Unit.

Cassettes can either express genes in their target organism, or be
assembled into multigene modules for expressing many genes at once,
depending on the chosen cassette vector during level 0 assembly.

Level 2

	
class moclo.core.modules.Device(AbstractModule)

	A level 2 module, also refered as a Multigene plasmid.

Modules of this level are assembled from several transcriptional units so
that they contain several genes that can be expressed all at once. Most of
the MoClo implementations are designed so that multiple devices can be
assembled into a module that is also a valid level 1 module, as does the
Golden Braid system with its α and Ω plasmids.

Vectors

MoClo vector classes.

A vector is a plasmidic DNA sequence that can hold a combination of modules of
the same level to create a single module of the following level. Vectors
contain a placeholder sequence that is replaced by the concatenation of the
modules during the Golden Gate assembly.

Abstract

	
class moclo.core.vectors.AbstractVector(object)

	An abstract modular cloning vector.

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
classmethod structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Level -1

	
class moclo.core.vectors.EntryVector(AbstractVector)

	Level 0 vector.

Level 0

	
class moclo.core.vectors.CassetteVector(AbstractVector)

	Level 1 vector.

Level 1

	
class moclo.core.vectors.DeviceVector(AbstractVector)

	Level 2 vector.

Parts

Moclo part classes.

Abstract

	
class moclo.core.parts.AbstractPart(object)

	An abstract modular cloning part.

Parts can be either modules or vectors, but are determined by their
flanking overhangs sequences, declared in the signature class
attribute. The part structure is derived from the part class (module
of vector), signature, and restriction enzyme.

Example

>>> class ExamplePart(AbstractPart, Entry):
... cutter = BsaI
... signature = ('ATGC', 'ATTC')
...
>>> ExamplePart.structure()
'GGTCTCN(ATGC)(NN*N)(ATTC)NGAGACC'

	
__init__(record)

	

	
classmethod characterize(record)

	Load the record in a concrete subclass of this type.

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod structure()

	Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The vector placeholder sequence

	The downstream (3’) overhang sequence

Errors

Base classes

	
class moclo.errors.MocloError(Exception)

	Base class for all MoClo-related exceptions.

	
class moclo.errors.AssemblyError(MocloError, RuntimeError)

	Assembly-specific run-time error.

	
class moclo.errors.AssemblyWarning(MocloError, Warning)

	Assembly-specific run-time warning.

Warnings can be turned into errors using the warnings.catch_warnings [https://docs.python.org/3/library/warnings.html#warnings.catch_warnings]
decorator combined to warnings.simplefilter [https://docs.python.org/3/library/warnings.html#warnings.simplefilter] with action set to
"error".

Errors

	
class moclo.errors.DuplicateModules(AssemblyError)

	Several modules share the same overhangs.

	
class moclo.errors.InvalidSequence(MocloError, ValueError)

	Invalid sequence provided.

	
class moclo.errors.IllegalSite(InvalidSequence)

	Sequence with illegal site provided.

	
class moclo.errors.MissingModule(AssemblyError)

	A module is missing in the assembly.

Warnings

	
class moclo.errors.UnusedModules(AssemblyWarning)

	Not all modules were used during assembly.

Changelogs

	moclo

	moclo-cidar

	moclo-ecoflex

	moclo-moclo

	moclo-plant

	moclo-ytk

moclo

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/althonos/moclo/compare/v0.4.7...HEAD]

v0.4.7_ - 2021-11-08

Changed

	Dropped support for Python versions older than Python 3.6.

	Required minimum version of 1.78 for Biopython.

v0.4.6_ - 2019-07-25

Changed

	Switch from cached-property to property-cached in dependencies.

v0.4.5 [https://github.com/althonos/moclo/compare/v0.4.4...v0.4.5] - 2019-02-22

Fixed

	Support all fs versions under 3.0.

v0.4.4 [https://github.com/althonos/moclo/compare/v0.4.3...v0.4.4] - 2019-02-11

Changed

	Add 2.3.0 to the supported fs versions.

v0.4.3 [https://github.com/althonos/moclo/compare/v0.4.2...v0.4.3] - 2019-01-06

Changed

	Add 2.2.0 to the supported fs versions.

Added

	Add Item.record shortcut to Item.entity.record in moclo.registry.

	Make moclo.core abstract classes check for illegal sites in sequence to
be identified as valid.

	This CHANGELOG file.

Documented

	Fix typos.

v0.4.2 [https://github.com/althonos/moclo/compare/v0.4.1...v0.4.2] - 2018-08-16

Fixed

	Some registries not loading CircularRecord instances.

v0.4.1 [https://github.com/althonos/moclo/compare/v0.4.0...v0.4.1] - 2018-08-16

Changed

	Bump required fs version to 2.1.0.

v0.4.0 [https://github.com/althonos/moclo/compare/v0.3.0...v0.4.0] - 2018-08-10

Added

	AbstractPart.characterize to load a record into a part instance.

	Option to include / exclude ELabFTWRegistry items using tags.

v0.3.0 [https://github.com/althonos/moclo/compare/v0.2.1...v0.3.0] - 2018-08-07

Added

	Annotate assembled vectors as circular in AbstractVector.assemble.

	eLabFTW registry connector in moclo.registry.elabftw.

Changed

	Move Item._find_type to public function moclo.registry.utils.find_type.

	Improve annotation generated in AbstractVector.assemble.

Fixed

	AbstractPart subclasses not being recognized as abstract.

v0.2.1 [https://github.com/althonos/moclo/compare/v0.2.0...v0.2.1] - 2018-07-27

Added

	moclo.registry.utils module with resistance idenfication function.

	Make AbstractVector.assemble add an alphabet to the generated sequence.

Documented

	Improved README.rst file.

v0.2.0 [https://github.com/althonos/moclo/compare/v0.1.0...v0.2.0] - 2018-07-24

Added

	Use AbstracModule.cutter and AbstractVector.cutter to deduce the
required structure for modules and vectors.

	AbstractPart class to generate sequence structure based on part signature.

	Add registry API in moclo.registry module.

Changed

	Make StructuredRecord convert SeqRecord to CircularRecord on
instantiation if needed.

	Use target_sequence method in AbstractVector.assemble.

	Make modules and vectors add sources to their target sequences when assembled.

	Patch CircularRecord.reverse_complement to return a CircularRecord.

Documented

	Add moclo.base.parts to documentation.

	Add example in AbstractPart docstring.

	Fix documentation of moclo.base

Fixed

	Fix AbstracModule.target_sequence and AbstractVector.target_sequence to
take into account cutter overhand position.

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...v0.1.0] - 2018-07-12

Initial public release.

moclo-cidar

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/althonos/moclo/compare/cidar/v0.4.0...HEAD]

Added

	This CHANGELOG file.

Changed

	Update CIDAR sequences to latest AddGene data update (1.6.2).

v0.4.0 [https://github.com/althonos/moclo/compare/cidar/v0.3.0...cidar/v0.4.0] - 2018-08-16

Changed

	Bumped moclo minimal required version to v0.4.0.

Documented

	Add SVG images illustrating CIDAR parts to the API documentation.

	Fixed class hierarchy in API documentation.

v0.3.0 [https://github.com/althonos/moclo/compare/cidar/v0.2.0...cidar/v0.3.0] - 2018-08-07

Changed

	Bumped moclo minimal required version to v0.3.0.

Removed

	Location attribute handler from CIDARRegistry.

	DVA and DVK sequences from the registry as they are not MoClo elements.

v0.2.0 [https://github.com/althonos/moclo/compare/cidar/v0.1.0...cidar/v0.2.0] - 2018-07-25

Added

	Partial reference CIDAR sequences in moclo.registry.cidar.CIDARRegistry.

Changed

	Use signature and cutter to generate structures of moclo.kits.cidar.CIDARPart
subclasses.

	Bumped moclo minimal required version to v0.2.0.

Documented

	Fixed link to documentation in README.rst.

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...cidar/v0.1.0] - 2018-07-12

Initial public release.

moclo-ecoflex

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/althonos/moclo/compare/ecoflex/v0.3.1...HEAD]

Fixed

	Annotations of CmR cassette in pBP-BBa_B0034.

	Add missing sequences to the EcoFlex registry:

	Promoters: pBP-SJM9** series.

v0.3.1 [https://github.com/althonos/moclo/compare/ecoflex/v0.3.0...ecoflex/v0.3.1] - 2018-11-19

Added

	This CHANGELOG file.

Fixed

	Wheel distribution not embedding the moclo.registry.ecoflex module.

	Add missing sequences to the EcoFlex registry:

	Promoters: pBP-BBa_B0012, pBP-BBa_B0015, pBP-BBa_B0034,

	Tags: pBP-HexHis

	CDS: pBP-eCFP, pBP-eGFP

	Promoter + RBS: pBP-T7-RBS-His6

	Device Vectors: pTU2-a-RFP, pTU2-b-RFP

v0.3.0 [https://github.com/althonos/moclo/compare/ecoflex/v0.2.0...ecoflex/v0.3.0] - 2018-08-16

Changed

	Bumped moclo minimal required version to v0.4.0.

Documented

	Fixed class hierarchy in API documentation.

v0.2.0 [https://github.com/althonos/moclo/compare/ecoflex/v0.1.0...ecoflex/v0.2.0] - 2018-08-07

Added

	Partial reference EcoFlex sequences in moclo.registry.ecoflex.EcoFlexRegistry.

Changed

	Use signature and cutter to generate structures of moclo.kits.ecoflex.EcoFlexPart
subclasses.

	Bumped moclo minimal required version to v0.3.0.

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...ecoflex/v0.1.0] - 2018-07-12

Initial public release.

moclo-moclo

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...ig/v0.1.0] - 2018-07-12

Initial public release.

moclo-plant

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...ig/v0.1.0] - 2018-07-12

Initial public release.

moclo-ytk

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com] and this
project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/althonos/moclo/compare/ytk/v0.4.0...HEAD]

Changed

	Update Pichia ToolKit sequences to latest AddGene data update (1.6.2).

Added

	This CHANGELOG file.

v0.4.0 [https://github.com/althonos/moclo/compare/ytk/v0.3.0...ytk/v0.4.0] - 2018-08-16

Changed

	Bumped moclo minimal required version to v0.4.0.

Documented

	Fixed class hierarchy in API documentation.

v0.3.0 [https://github.com/althonos/moclo/compare/ytk/v0.2.0...ytk/v0.3.0] - 2018-08-07

Changed

	Bumped moclo minimal required version to v0.3.0.

Documented

	Fix links to documentation in README.rst.

	Add YTK specific notebook in a Docker image.

v0.2.0 [https://github.com/althonos/moclo/compare/ytk/v0.1.0...ytk/v0.2.0] - 2018-07-24

Added

	Reference Yeast ToolKit sequences in moclo.registry.ytk.YTKRegistry.

	Reference Pichia ToolKit sequences in moclo.registry.ytk.PTKRegistry.

Changed

	Redefined YTKProduct._structure as a public static method.

v0.1.0 [https://github.com/althonos/moclo/compare/20aa50fb2202279215c36e2b687a7e989667e34f...ytk/v0.1.0] - 2018-07-12

Initial public release.

About

Authors

moclo is developped and maintained by:

	
Martin Larralde

Graduate student, Biology department

École Normale Supérieure Paris Saclay

martin.larralde@ens-paris-saclay.fr

This library was developped during a summer internship at Institut Pasteur,
under the supervision of:

	
François Bertaux

Reserach Engineer, InBio Unit

Inria / Institut Pasteur

francois.bertaux@pasteur.fr

	
Grégory Batt

Senior Scientist, Head of InBio Unit

Inria / Institut Pasteur

gregory.batt@inria.fr

License

This project is licensed under the MIT License [https://choosealicense.com/licenses/mit/].

MoClo Kit

An implementation of the original MoClo ToolKit for the Python MoClo library.

[image: ../../_images/468902_1_En_8_Fig2_HTML.png]
 [https://link.springer.com/protocol/10.1007/978-1-0716-0908-8_8]
References

	Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011).
A Modular Cloning System for Standardized Assembly of Multigene Constructs.
PLOS ONE, 6(2), e16765. [https://doi.org/10.1371/journal.pone.0016765].

	Werner, S., Engler, C., Weber, E., Gruetzner, R., & Marillonnet, S. (2012).
Fast track assembly of multigene constructs using Golden Gate cloning
and the MoClo system. Bioengineered, 3(1), 38–43. [https://doi.org/10.4161/bbug.3.1.18223].

	Marillonnet, S., Werner, S. (2020).
Assembly of Multigene Constructs Using the Modular Cloning System
MoClo. Methods Mol Biol. 2020;2205:125-141. [https://10.1007/978-1-0716-0908-8_8].

Level -1

Module

	
class moclo.kits.moclo.MoCloProduct(Product)

	An original MoClo product.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BpiI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.moclo.MoCloEntryVector(EntryVector)

	A MoClo entry vector.

References

Weber et al., Figure 2A.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BpiI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
classmethod structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Level 0

Module

	
class moclo.kits.moclo.MoCloEntry(Entry)

	An original MoClo entry.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.moclo.MoCloCassetteVector(CassetteVector)

	A MoClo cassette vector.

References

Weber et al., Figure 4A.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
classmethod structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Parts

	
class moclo.kits.moclo.MoCloPro(MoCloPart, MoCloEntry)

	An original MoClo promoter part.

	
class moclo.kits.moclo.MoClo5U(MoCloPart, MoCloEntry)

	An original MoClo 5’ UTR part.

	
class moclo.kits.moclo.MoClo5Uf(MoCloPart, MoCloEntry)

	An original MoClo 5’UTR part for N-terminal tag linkage.

	
class moclo.kits.moclo.MoCloNTag(MoCloPart, MoCloEntry)

	An original MoClo N-terminal tag part.

	
class moclo.kits.moclo.MoCloPro5U(MoCloPart, MoCloEntry)

	An original MoClo promoter fused with a 5’UTR part.

	
class moclo.kits.moclo.MoCloPro5Uf(MoCloPart, MoCloEntry)

	An original MoClo promoter fused with a 5’UTR for N-terminal linkage.

	
class moclo.kits.moclo.MoCloCDS1(MoCloPart, MoCloEntry)

	An original MoClo CDS1.

	
class moclo.kits.moclo.MoCloCDS1ns(MoCloPart, MoCloEntry)

	An original MoClo CDS1 without STOP codon for C-terminal tag linkage.

	
class moclo.kits.moclo.MoCloSP(MoCloPart, MoCloEntry)

	An original MoClo signal peptide part.

	
class moclo.kits.moclo.MoCloCDS2(MoCloPart, MoCloEntry)

	An original MoClo CDS2 part.

	
class moclo.kits.moclo.MoCloCDS2ns(MoCloPart, MoCloEntry)

	An original MoClo CDS2 for C-terminal tag linkage.

	
class moclo.kits.moclo.MoCloCTag(MoCloPart, MoCloEntry)

	An original MoClo C-terminal tag part.

	
class moclo.kits.moclo.MoClo3U(MoCloPart, MoCloEntry)

	An original MoClo 3’UTR part.

	
class moclo.kits.moclo.MoCloTer(MoCloPart, MoCloEntry)

	An original MoClo terminator part.

	
class moclo.kits.moclo.MoClo3UTer(MoCloPart, MoCloEntry)

	An original MoClo terminator part.

	
class moclo.kits.moclo.MoCloGene(MoCloPart, MoCloEntry)

	An complete transcription unit stored as an original MoClo part.

Level 1

Module

	
class moclo.kits.moclo.MoCloCassette(Cassette)

	An original MoClo cassette.

	
cutter

	alias of Bio.Restriction.Restriction.BpiI

Vector

	
class moclo.kits.moclo.MoCloDeviceVector(DeviceVector)

	An original MoClo device vector.

References

Weber et al., Figure 4A.

	
cutter

	alias of Bio.Restriction.Restriction.BpiI

Parts

	
class moclo.kits.moclo.MoCloEndLinker(MoCloPart, MoCloCassette)

	An Icon Genetic end linker part.

References

Weber et al., Figure 5.

Level M

Parts

	
class moclo.kits.moclo.MoCloLevelMVector(MoCloPart, MoCloDeviceVector)

	
	
cutter

	alias of Bio.Restriction.Restriction.BpiI

	
classmethod structure()

	Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The vector placeholder sequence

	The downstream (3’) overhang sequence

	
class moclo.kits.moclo.MoCloLevelMEndLinker(MoCloPart, MoCloCassette)

	
	
classmethod structure()

	Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The vector placeholder sequence

	The downstream (3’) overhang sequence

Level P

Parts

	
class moclo.kits.moclo.MoCloLevelPVector(MoCloPart, MoCloCassetteVector)

	
	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
classmethod structure()

	Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The vector placeholder sequence

	The downstream (3’) overhang sequence

	
class moclo.kits.moclo.MoCloLevelPEndLinker(MoCloPart, MoCloEntry)

	
	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
classmethod structure()

	Get the part structure, as a DNA regex pattern.

The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The vector placeholder sequence

	The downstream (3’) overhang sequence

Plant Parts Kit

An implementation of the Plant Parts Kit for the Python MoClo library.

References

	Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011).
A Modular Cloning System for Standardized Assembly of Multigene Constructs.
PLOS ONE, 6(2), e16765. [https://doi.org/10.1371/journal.pone.0016765]

	Werner, S., Engler, C., Weber, E., Gruetzner, R., & Marillonnet, S. (2012).
Fast track assembly of multigene constructs using Golden Gate cloning
and the MoClo system. Bioengineered, 3(1), 38–43. [https://doi.org/10.4161/bbug.3.1.18223]

CIDAR Kit

An implementation of the CIDAR ToolKit for the Python MoClo library.

References

	Iverson, S. V., Haddock, T. L., Beal, J., & Densmore, D. M. (2016).
CIDAR MoClo: Improved MoClo Assembly Standard and New E. coli Part Library
Enable Rapid Combinatorial Design for Synthetic and Traditional Biology.
ACS Synthetic Biology, 5(1), 99–103. [https://doi.org/10.1021/acssynbio.5b00124]

	Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011).
A Modular Cloning System for Standardized Assembly of Multigene Constructs.
PLOS ONE, 6(2), e16765. [https://doi.org/10.1371/journal.pone.0016765]

Level -1

Module

	
class moclo.kits.cidar.CIDARProduct(Product)

	A CIDAR MoClo product.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BbsI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.cidar.CIDAREntryVector(EntryVector)

	A CIDAR MoClo entry vector.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BbsI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
static structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Level 0

Module

	
class moclo.kits.cidar.CIDAREntry(Entry)

	A CIDAR MoClo entry.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.cidar.CIDARCassetteVector(CassetteVector)

	A CIDAR Moclo cassette vector.

References

Iverson et al., Figure 1.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
static structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Parts

	
class moclo.kits.cidar.CIDARPromoter(CIDARPart, CIDAREntry)

	A CIDAR Promoter part.

[image: ../../_images/promoter.svg]Parts of this type contain contain a promoter. The upstream overhangs can
be changed to amend the order of assembly of a circuit from different
cassettes.

Note

The CIDAR toolkit parts provide 4 different upstream overhangs:
GGAG, GCTT, CGCT, and TGCC. These are not enforced in this
module, and any upstream sequence will be accepted. The downstream
sequence however is always TACT.

	
class moclo.kits.cidar.CIDARRibosomeBindingSite(CIDARPart, CIDAREntry)

	A CIDAR ribosome binding site.

[image: ../../_images/rbs.svg]Parts of this type contain a ribosome binding site (RBS). The downstream
overhang doubles as the start codon for the subsequent coding sequence.

	
class moclo.kits.cidar.CIDARCodingSequence(CIDARPart, CIDAREntry)

	A CIDAR coding sequence.

[image: ../../_images/cds.svg]Parts of this type contain a coding sequence, with the start codon located
on the upstream overhang.

Caution

Although the start codon is located on the upstream overhang, a STOP
codon is expected to be found within this part target sequence before
the downstream overhang.

	
class moclo.kits.cidar.CIDARTerminator(CIDARPart, CIDAREntry)

	A CIDAR terminator.

[image: ../../_images/terminator.svg]Parts of this type contain a terminator. The upstream overhang is always
the same for the terminator to directly follow the coding sequence, but
the downstream overhang can vary to specify an order for a following
multigenic assembly within a device.

Note

The CIDAR toolkit parts provide 4 different downstream overhangs:
GCTT, CGCT, TGCC, and ACTA. These are not enforced in this
module, and any downstream sequence will be accepted. The upstream
sequence however is always AGGT.

Level 1

Module

	
class moclo.kits.cidar.CIDARCassette(Cassette)

	A CIDAR MoClo cassette.

	
cutter

	alias of Bio.Restriction.Restriction.BbsI

Vector

	
class moclo.kits.cidar.CIDARDeviceVector(DeviceVector)

	A CIDAR Moclo device vector.

References

Iverson et al., Figure 1.

	
cutter

	alias of Bio.Restriction.Restriction.BbsI

	
static structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

Level 2

Module

	
class moclo.kits.cidar.CIDARDevice(Device)

	A CIDAR MoClo device.

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

EcoFlex Kit

An implementation of the EcoFlex ToolKit for the Python MoClo library.

References

	Moore, S. J., Lai, H.-E., Kelwick, R. J. R., Chee, S. M., Bell, D. J.,
Polizzi, K. M., Freemont, P. S. (2016).
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
ACS Synthetic Biology, 5(10), 1059–1069. [https://doi.org/10.1021/acssynbio.6b00031]

	Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011).
A Modular Cloning System for Standardized Assembly of Multigene Constructs.
PLOS ONE, 6(2), e16765. [https://doi.org/10.1371/journal.pone.0016765]

Level 0

Module

	
class moclo.kits.ecoflex.EcoFlexEntry(Entry)

	An EcoFlex MoClo entry.

EcoFlex entries are stored and shared as plasmids flanked by BsaI
binding sites at both ends of the target sequence.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.ecoflex.EcoFlexCassetteVector(CassetteVector)

	An EcoFlex MoClo cassette vector.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
static structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Parts

	
class moclo.kits.ecoflex.EcoFlexPromoter(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo promoter.

	
class moclo.kits.ecoflex.EcoFlexRBS(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo ribosome binding site.

[image: kits/ecoflex/rbs.svg]Parts of this type contain a ribosome binding site (RBS). The last
adenosine serves as the beginning of the start codon of the following CDS.

	
class moclo.kits.ecoflex.EcoFlexTagLinker(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo tag linker.

[image: kits/ecoflex/linker.svg]Parts of this type also contain a RBS, but they allow adding a N-terminal
tag sequence before the CDS.

	
class moclo.kits.ecoflex.EcoFlexTag(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo N-terminal tag.

[image: kits/ecoflex/tag.svg]Parts of this type typically contain tags that are added to the N-terminus
of the translated protein, such as a hexa histidine or a Strep(II) tag.

	
class moclo.kits.ecoflex.EcoFlexCodingSequence(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo coding sequence.

[image: kits/ecoflex/cds.svg]Parts of this type contain a coding sequence (CDS), with the start codon
beginning on the upstream overhang.

Caution

Although the start codon is located on the upstream overhang, a STOP
codon is expected to be found within this part target sequence before
the downstream overhang.

	
class moclo.kits.ecoflex.EcoFlexTerminator(EcoFlexPart, EcoFlexEntry)

	An EcoFlex MoClo terminator.

[image: kits/ecoflex/terminator.svg]

Level 1

Module

	
class moclo.kits.ecoflex.EcoFlexCassette(Cassette)

	An EcoFlex MoClo cassette.

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

Vector

	
class moclo.kits.ecoflex.EcoFlexDeviceVector(DeviceVector)

	An EcoFlex MoClo device vector.

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

	
static structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

Level 2

Module

	
class moclo.kits.ecoflex.EcoFlexDevice(Device)

	An EcoFlex MoClo device.

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

Yeast ToolKit (YTK) / Pichia ToolKit (PTK)

An implementation of the Yeast ToolKit for the Python MoClo library.

This module is tested against the officials parts available in the Yeast
ToolKit (YTK), and also against the Pichia ToolKit (PTK) parts since they were
designed to be compatible with each other.

The documentation of this module is mostly adapted from the Lee et al.
supplementary data. Each item also has specific sections that are organized
as follow:

	Note:
	this section describes a behaviour that is not part of the YTK
standard, but that is implemnted in all YTK official parts, and encouraged
to follow by the YTK authors.

	Caution
	this section describes a behaviour that goes against the MoClo standard,
but which you are entitled to follow for your parts to be valid YTK parts.

	Danger
	this section describes a quirk specific to the moclo-ytk library.

References

	Lee, M. E., DeLoache, W. C., Cervantes, B., Dueber, J. E. (2015).
A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.
ACS Synthetic Biology, 4(9), 975–986. [https://doi.org/10.1021/sb500366v]

	Obst, U., Lu, T. K., Sieber, V. (2017).
A Modular Toolkit for Generating Pichia pastoris Secretion Libraries.
ACS Synthetic Biology, 6(6), 1016–1025 [https://doi.org/10.1021/acssynbio.6b00337]

	Weber, E., Engler, C., Gruetzner, R., Werner, S., Marillonnet, S. (2011).
A Modular Cloning System for Standardized Assembly of Multigene Constructs.
PLOS ONE, 6(2), e16765. [https://doi.org/10.1371/journal.pone.0016765]

Level -1

Module

	
class moclo.kits.ytk.YTKProduct(Product)

	A MoClo Yeast ToolKit product.

As the YTK entry vector does not contain the required BsaI restriction
site, the site must be contained in the product sequence.

Caution

The standard construction describe in the Lee et al. paper directly
inserts the beginning of the BsaI recognition site inside of the two
BsmBI overhangs at both ends of the product. Other valid constructs
that do not proceed like so won’t be considered a valid product,
although they contain the required BsaI site.

References

Lee et al., Supplementary Figure S19.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
static structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.ytk.YTKEntryVector(EntryVector)

	A MoClo Yeast ToolKit entry vector.

Any plasmid with two BsmBI restriction sites can be used to create a YTK
entry, although the toolkit-provided entry vector (pYTK001) is probably
the most appropriate plasmid to use.

Caution

To the contrary of the usual MoClo entry vectors described in the
Weber et al. paper, the YTK entry vectors do not provide another
BsaI restriction site enclosing the placeholder sequence. As such,
YTK Level -1 modules must embed the BsaI binding site.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
classmethod structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Level 0

Module

	
class moclo.kits.ytk.YTKEntry(Entry)

	A MoClo Yeast ToolKit entry.

YTK entries are stored and shared as plasmids flanked by BsaI binding
sites at both ends of the target sequence.

Danger

Although the BsaI binding sites is not located within the target
sequence for almost all the standard toolkit parts, special Type 234r
parts have these sites reversed, because these parts are used to
assemble cassette vectors and require the final construct to contain
a BsaI site to allow assembly with other parts. Those parts will
not match the default YTKEntry, and must be
used as YTKPart234r instances for the assembly
logic to work as expected.

	
__init__(record)

	

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
overhang_start()

	Get the upstream overhang of the target sequence.

	Returns

	the downstream overhang.

	Return type

	Seq

	
classmethod structure()

	Get the module structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The upstream (5’) overhang sequence

	The module target sequence

	The downstream (3’) overhang sequence

	
target_sequence()

	Get the target sequence of the module.

Modules are often stored in a standardized way, and contain more than
the sequence of interest: for instance they can contain an antibiotic
marker, that will not be part of the assembly when that module is
assembled into a vector; only the target sequence is inserted.

	Returns

	the target sequence with annotations.

	Return type

	SeqRecord

Note

Depending on the cutting direction of the restriction enzyme used
during assembly, the overhang will be left at the beginning or at
the end, so the obtained record is exactly the sequence the enzyme
created during restriction.

Vector

	
class moclo.kits.ytk.YTKCassetteVector(CassetteVector)

	A MoClo Yeast ToolKit cassette vector.

The YTK provides a canonical integration plasmid, preassembled from
several other parts, that can be used as a cassette vector for an assembly
of Type 2, 3 and 4 parts. Type 8, 8a and 678 parts are also considered as
cassette vectors.

References

Lee et al., Figure 2.

	
__init__(record)

	

	
assemble(module, *modules, **kwargs)

	Assemble the provided modules into the vector.

	Parameters

	
	module (AbstractModule) – a module to insert
in the vector.

	modules (AbstractModule, optional) – additional
modules to insert in the vector. The order of the parameters
is not important, since modules will be sorted by their start
overhang in the function.

	Returns

	the assembled sequence with sequence
annotations inherited from the vector and the modules.

	Return type

	SeqRecord

	Raises

	
	DuplicateModules – when two different modules share
 the same start overhang, leading in possibly non-deterministic
 constructs.

	MissingModule – when a module has an end overhang
 that is not shared by any other module, leading to a partial
 construct only

	InvalidSequence – when one of the modules does not
 match the required module structure (missing site, wrong
 overhang, etc.).

	UnusedModules – when some modules were not used
 during the assembly (mostly caused by duplicate parts).

	
cutter

	alias of Bio.Restriction.Restriction.BsaI

	
is_valid()

	Check if the wrapped record follows the required class structure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the record is valid, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
overhang_end()

	Get the downstream overhang of the vector sequence.

	
overhang_start()

	Get the upstream overhang of the vector sequence.

	
placeholder_sequence()

	Get the placeholder sequence in the vector.

The placeholder sequence is replaced by the concatenation of modules
during the assembly. It often contains a dropout sequence, such as a
GFP expression cassette that can be used to measure the progress of
the assembly.

	
classmethod structure()

	Get the vector structure, as a DNA regex pattern.

Warning

If overloading this method, the returned pattern must include 3
capture groups to capture the following features:

	The downstream (3’) overhang sequence

	The vector placeholder sequence

	The upstream (5’) overhang sequence

	
target_sequence()

	Get the target sequence in the vector.

The target sequence if the part of the plasmid that is not discarded
during the assembly (everything except the placeholder sequence).

Parts

Base Parts

	
class moclo.kits.ytk.YTKPart1(YTKPart, YTKEntry)

	A YTK Type 1 part (Upstream assembly connector).

[image: ../../_images/type1.svg]Parts of this type contain non-coding and non-regulatory sequences that
are used to direct assembly of multigene plasmids, such as ligation sites
for other Type IIS endonucleases (e.g. BsmBI).

Note

Official toolkit Type 1 parts also include a EcoRI and XbaI site
just after the upstream overhang for BioBrick compatibility of the
assembled cassettes and multi-gene plasmids.

	
class moclo.kits.ytk.YTKPart2(YTKPart, YTKEntry)

	A YTK Type 2 part (Promoter).

[image: ../../_images/type2.svg]Parts of this type contain a promoter. The downstream overhang doubles as
the start codon for the subsequent Type 3 or Type 3a coding sequence.

Note

Official toolkit Type 2 parts also include a BglII site immediately
preceding the start codon (overlapping the downstream overhang) for
BglBrick compatibility.

	
class moclo.kits.ytk.YTKPart3(YTKPart, YTKEntry)

	A YTK Type 3 part (Coding sequence).

[image: ../../_images/type3.svg]Parts of this type contain a coding sequence, with the start codon located
on the upstream overhang. If a stop codon is omitted from the part, and
two bases are added before the downstream overhang, the resulting site can
be used as a two amino acid linker to a Type 4 or 4a C-terminal fusion.

Note

Official toolkit Type 3 parts also include a BamHI recognition site
at the end of the included CDS (overlapping the downstream overhang)
for BglBrick compatibility.

	
class moclo.kits.ytk.YTKPart3a(YTKPart, YTKEntry)

	A YTK Type 3a part (N-terminal coding sequence).

[image: ../../_images/type3a.svg]

	
class moclo.kits.ytk.YTKPart3b(YTKPart, YTKEntry)

	A YTK Type 3b part (C-terminal coding sequence).

[image: ../../_images/type3b.svg]
Note

As with Type 3 parts, official toolkits Type 3b parts also include a
BamHI recognition site at the end of the included CDS (overlapping
the downstream overhang) for BglBrick compatibility.

	
class moclo.kits.ytk.YTKPart4(YTKPart, YTKEntry)

	A YTK Type 4 part (Transcriptional terminator).

[image: ../../_images/type4.svg]As Type 3 parts do not include a stop codon, parts of this type should
encode an in-frame stop codon before the transcriptional terminator.
Commonly used C-terminal fusions, such as purification or epitope tags,
but it is recommended to use YTKPart4a and
YTKPart4b subtypes instead.

Note

Official toolkit Type 4 parts all start by a stop codon directly after
the upstream overhang, followed by a XhoI recognition site which
enables BglBrick compatibility, then followed by the terminator
sequence itself.

	
class moclo.kits.ytk.YTKPart4a(YTKPart, YTKEntry)

	A YTK Type 4a part (C-terminal tag sequence).

[image: ../../_images/type4a.svg]Type 4a parts contain additional coding sequences that will be fused to
the C-terminal extremity of the protein. These parts include, but are not
limited to: localisation tags, purification tags, fluorescent proteins.

Caution

In contrast to the Type 3 and 3b parts, the convention for 4a parts
is to include the stop codon rather than enable read-through of the
downstream overhang, although that convention it is not enforced.

Note

Official toolkit Type 4a parts contain a stop codon after the CDS,
itself immediately followed by a XhoI recognition site just before
the downstream overhang, for BglBrick compatibility.

	
class moclo.kits.ytk.YTKPart4b(YTKPart, YTKEntry)

	A YTK Type 4b part (Terminator sequence).

[image: ../../_images/type4b.svg]Type 4b contain transcriptional terminators, but are not required to
encode an in-frame start codon, as it should be located in the Type 4a
part that precedes it.

	
class moclo.kits.ytk.YTKPart5(YTKPart, YTKEntry)

	A YTK Type 5 part (Downstream assembly connector).

[image: ../../_images/type5.svg]As with Type 1 parts, parts of this type provide sequences such as
restriction enzymes recognition sites, for instance in order to direct
multigene expression plasmids.

Note

Official toolkit parts also include a SpeI and PstI site at the
end of the part sequence for BioBrick compatibility of the assembled
cassettes and multi-gene plasmids.

	
class moclo.kits.ytk.YTKPart6(YTKPart, YTKEntry)

	A YTK Type 6 part (Yeast marker).

[image: ../../_images/type6.svg]Parts of this type contain a selectable marker for S. cerevisiae, as
a full expression cassette (promoter, ORF, and terminal) for conferring
the selectable phenotype (such as drug-resistance or bioluminescence).

	
class moclo.kits.ytk.YTKPart7(YTKPart, YTKEntry)

	A YTK Part Type 7 part (Yeast origin / 3’ homology).

[image: ../../_images/type7.svg]Depending on the expression organism (E.coli or S. ceverisiae), this
sequence will either hold a yeast origin of replication, or a 3’ homology
sequence for integration in the bacterial genome.

	
class moclo.kits.ytk.YTKPart8(YTKPart, YTKCassetteVector)

	A YTK Type 8 part (Bacterial origin & marker).

[image: ../../_images/type8.svg]Parts of this type contain a bacterial origin of replication, as well
as an antibiotic resistance marker. They act as the Golden Gate Assembly
vector when assembling a cassette, and as such should also embbed a
dropout sequence, such as a fluorescent protein expression cassette.

Note

Official toolkit parts use an mRFP coding sequence as the dropout,
and also include NotI restriction site at each end of the part to
allow the verification of new assemblies.

	
class moclo.kits.ytk.YTKPart8a(YTKPart, YTKCassetteVector)

	A YTK Part 8a part (Bacterial origin & marker).

[image: ../../_images/type8a.svg]Parts of this type, like Type 8 parts, include a bacterial origin of
replication and an antibiotic resistance marker, and act as Assembly
vectors.

Note

Official toolkit parts use an mRFP coding sequence as the dropout,
and also include NotI restriction site at each end of the part so
the integration plasmid can be linearized prior to transformation
into yeast.

	
class moclo.kits.ytk.YTKPart8b(YTKPart, YTKEntry)

	A YTK Type 8b part (5’ homology).

[image: ../../_images/type8b.svg]As with certain Type 7 parts, parts of this type contain long sequences
of homology to the genome that is upstream of the target locus.

Composite

	
class moclo.kits.ytk.YTKPart234(YTKPart, YTKEntry)

	A YTK Type 234 part (Composite 2, 3, 4).

[image: ../../_images/type234.svg]Type 234 parts are composed of a complete expression cassette (promoter,
coding sequence, and terminator) fused into a single part, instead of
separate Type 2, 3 and 4 parts.

	
class moclo.kits.ytk.YTKPart234r(YTKPart, YTKEntry)

	A YTK Type 234 part (Composite 2, 3, 4) with reversed BsaI sites.

[image: ../../_images/type234r.svg]Type 234r parts are designed so that the BsaI sites are kept within the
final cassette. They are used to assemble canonical integration vectors,
where the Type 234 part acts as a placeholder until replaced by actual
Type 2, 3 and 4 parts in the final construct.

	
class moclo.kits.ytk.YTKPart678(YTKPart, YTKCassetteVector)

	A YTK Type 678 part (Composite 6, 7, 8).

[image: ../../_images/type678.svg]Type 678 parts are used when there is no requirement for yeast markers
and origins to be included in the final assembly, for instance when
assembling an intermediary plasmid acting as a vector for a multi-gene
construct.

Level 1

Module

	
class moclo.kits.ytk.YTKCassette(Cassette)

	A MoClo Yeast ToolKit cassette.

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

Vector

	
class moclo.kits.ytk.YTKDeviceVector(DeviceVector)

	A MoClo Yeast ToolKit multigene vector.

Parts of Type 1 and 5 are used to order the cassette plasmids within
the multigene assembly. The vector always contains a ConLS and ConRE
parts.

References

Lee et al., Supplementary Figure S21.

	
cutter

	alias of Bio.Restriction.Restriction.BsmBI

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 moclo	

 	
 	
 moclo.core.modules	

 	
 	
 moclo.core.parts	

 	
 	
 moclo.core.vectors	

 	
 	
 moclo.errors	

 	
 	
 moclo.kits.cidar	

 	
 	
 moclo.kits.ecoflex	

 	
 	
 moclo.kits.moclo	

 	
 	
 moclo.kits.plant	

 	
 	
 moclo.kits.ytk	

 	
 	
 moclo.record	

 	
 	
 moclo.registry.base	

Index

 _
 | A
 | C
 | D
 | E
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | Y

_

 	
 	__add__() (moclo.record.CircularRecord method)

 	__contains__() (moclo.record.CircularRecord method)

 	__getitem__() (moclo.record.CircularRecord method)

 	__init__() (moclo.core.modules.AbstractModule method)

 	(moclo.core.parts.AbstractPart method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntry method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.cidar.CIDARProduct method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.ecoflex.EcoFlexEntry method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntry method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.moclo.MoCloProduct method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntry method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	(moclo.kits.ytk.YTKProduct method)

 	(moclo.record.CircularRecord method)

 	(moclo.registry.base.CombinedRegistry method)

 	
 	__lshift__() (moclo.record.CircularRecord method)

 	__radd__() (moclo.record.CircularRecord method)

 	__rshift__() (moclo.record.CircularRecord method)

A

 	
 	AbstractModule (class in moclo.core.modules)

 	AbstractPart (class in moclo.core.parts)

 	AbstractRegistry (class in moclo.registry.base)

 	AbstractVector (class in moclo.core.vectors)

 	assemble() (moclo.core.vectors.AbstractVector method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	
 	AssemblyError (class in moclo.errors)

 	AssemblyWarning (class in moclo.errors)

C

 	
 	Cassette (class in moclo.core.modules)

 	CassetteVector (class in moclo.core.vectors)

 	characterize() (moclo.core.parts.AbstractPart class method)

 	CIDARCassette (class in moclo.kits.cidar)

 	CIDARCassetteVector (class in moclo.kits.cidar)

 	CIDARCodingSequence (class in moclo.kits.cidar)

 	CIDARDevice (class in moclo.kits.cidar)

 	CIDARDeviceVector (class in moclo.kits.cidar)

 	CIDAREntry (class in moclo.kits.cidar)

 	CIDAREntryVector (class in moclo.kits.cidar)

 	CIDARProduct (class in moclo.kits.cidar)

 	CIDARPromoter (class in moclo.kits.cidar)

 	CIDARRibosomeBindingSite (class in moclo.kits.cidar)

 	CIDARTerminator (class in moclo.kits.cidar)

 	CircularRecord (class in moclo.record)

 	CombinedRegistry (class in moclo.registry.base)

 	cutter (moclo.core.modules.AbstractModule attribute)

 	(moclo.kits.cidar.CIDARCassette attribute)

 	(moclo.kits.cidar.CIDARCassetteVector attribute)

 	(moclo.kits.cidar.CIDARDevice attribute)

 	(moclo.kits.cidar.CIDARDeviceVector attribute)

 	(moclo.kits.cidar.CIDAREntry attribute)

 	(moclo.kits.cidar.CIDAREntryVector attribute)

 	(moclo.kits.cidar.CIDARProduct attribute)

 	(moclo.kits.ecoflex.EcoFlexCassette attribute)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector attribute)

 	(moclo.kits.ecoflex.EcoFlexDevice attribute)

 	(moclo.kits.ecoflex.EcoFlexDeviceVector attribute)

 	(moclo.kits.ecoflex.EcoFlexEntry attribute)

 	(moclo.kits.moclo.MoCloCassette attribute)

 	(moclo.kits.moclo.MoCloCassetteVector attribute)

 	(moclo.kits.moclo.MoCloDeviceVector attribute)

 	(moclo.kits.moclo.MoCloEntry attribute)

 	(moclo.kits.moclo.MoCloEntryVector attribute)

 	(moclo.kits.moclo.MoCloLevelMVector attribute)

 	(moclo.kits.moclo.MoCloLevelPEndLinker attribute)

 	(moclo.kits.moclo.MoCloLevelPVector attribute)

 	(moclo.kits.moclo.MoCloProduct attribute)

 	(moclo.kits.ytk.YTKCassette attribute)

 	(moclo.kits.ytk.YTKCassetteVector attribute)

 	(moclo.kits.ytk.YTKDeviceVector attribute)

 	(moclo.kits.ytk.YTKEntry attribute)

 	(moclo.kits.ytk.YTKEntryVector attribute)

 	(moclo.kits.ytk.YTKProduct attribute)

D

 	
 	Device (class in moclo.core.modules)

 	
 	DeviceVector (class in moclo.core.vectors)

 	DuplicateModules (class in moclo.errors)

E

 	
 	EcoFlexCassette (class in moclo.kits.ecoflex)

 	EcoFlexCassetteVector (class in moclo.kits.ecoflex)

 	EcoFlexCodingSequence (class in moclo.kits.ecoflex)

 	EcoFlexDevice (class in moclo.kits.ecoflex)

 	EcoFlexDeviceVector (class in moclo.kits.ecoflex)

 	EcoFlexEntry (class in moclo.kits.ecoflex)

 	EcoFlexPromoter (class in moclo.kits.ecoflex)

 	
 	EcoFlexRBS (class in moclo.kits.ecoflex)

 	EcoFlexTag (class in moclo.kits.ecoflex)

 	EcoFlexTagLinker (class in moclo.kits.ecoflex)

 	EcoFlexTerminator (class in moclo.kits.ecoflex)

 	EmbeddedRegistry (class in moclo.registry.base)

 	Entry (class in moclo.core.modules)

 	EntryVector (class in moclo.core.vectors)

I

 	
 	IllegalSite (class in moclo.errors)

 	InvalidSequence (class in moclo.errors)

 	is_valid() (moclo.core.modules.AbstractModule method)

 	(moclo.core.parts.AbstractPart method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntry method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.cidar.CIDARProduct method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.ecoflex.EcoFlexEntry method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntry method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.moclo.MoCloProduct method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntry method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	(moclo.kits.ytk.YTKProduct method)

M

 	
 	MissingModule (class in moclo.errors)

 	
 moclo.core.modules

 	module

 	
 moclo.core.parts

 	module

 	
 moclo.core.vectors

 	module

 	
 moclo.errors

 	module

 	
 moclo.kits.cidar

 	module

 	
 moclo.kits.ecoflex

 	module

 	
 moclo.kits.moclo

 	module

 	
 moclo.kits.plant

 	module

 	
 moclo.kits.ytk

 	module

 	
 moclo.record

 	module

 	
 moclo.registry.base

 	module

 	MoClo3U (class in moclo.kits.moclo)

 	MoClo3UTer (class in moclo.kits.moclo)

 	MoClo5U (class in moclo.kits.moclo)

 	MoClo5Uf (class in moclo.kits.moclo)

 	MoCloCassette (class in moclo.kits.moclo)

 	MoCloCassetteVector (class in moclo.kits.moclo)

 	MoCloCDS1 (class in moclo.kits.moclo)

 	MoCloCDS1ns (class in moclo.kits.moclo)

 	
 	MoCloCDS2 (class in moclo.kits.moclo)

 	MoCloCDS2ns (class in moclo.kits.moclo)

 	MoCloCTag (class in moclo.kits.moclo)

 	MoCloDeviceVector (class in moclo.kits.moclo)

 	MoCloEndLinker (class in moclo.kits.moclo)

 	MoCloEntry (class in moclo.kits.moclo)

 	MoCloEntryVector (class in moclo.kits.moclo)

 	MocloError (class in moclo.errors)

 	MoCloGene (class in moclo.kits.moclo)

 	MoCloLevelMEndLinker (class in moclo.kits.moclo)

 	MoCloLevelMVector (class in moclo.kits.moclo)

 	MoCloLevelPEndLinker (class in moclo.kits.moclo)

 	MoCloLevelPVector (class in moclo.kits.moclo)

 	MoCloNTag (class in moclo.kits.moclo)

 	MoCloPro (class in moclo.kits.moclo)

 	MoCloPro5U (class in moclo.kits.moclo)

 	MoCloPro5Uf (class in moclo.kits.moclo)

 	MoCloProduct (class in moclo.kits.moclo)

 	MoCloSP (class in moclo.kits.moclo)

 	MoCloTer (class in moclo.kits.moclo)

 	
 module

 	moclo.core.modules

 	moclo.core.parts

 	moclo.core.vectors

 	moclo.errors

 	moclo.kits.cidar

 	moclo.kits.ecoflex

 	moclo.kits.moclo

 	moclo.kits.plant

 	moclo.kits.ytk

 	moclo.record

 	moclo.registry.base

O

 	
 	overhang_end() (moclo.core.modules.AbstractModule method)

 	(moclo.core.vectors.AbstractVector method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntry method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.cidar.CIDARProduct method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.ecoflex.EcoFlexEntry method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntry method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.moclo.MoCloProduct method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntry method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	(moclo.kits.ytk.YTKProduct method)

 	
 	overhang_start() (moclo.core.modules.AbstractModule method)

 	(moclo.core.vectors.AbstractVector method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntry method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.cidar.CIDARProduct method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.ecoflex.EcoFlexEntry method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntry method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.moclo.MoCloProduct method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntry method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	(moclo.kits.ytk.YTKProduct method)

P

 	
 	placeholder_sequence() (moclo.core.vectors.AbstractVector method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	
 	Product (class in moclo.core.modules)

R

 	
 	reverse_complement() (moclo.record.CircularRecord method)

S

 	
 	structure() (moclo.core.modules.AbstractModule class method)

 	(moclo.core.parts.AbstractPart class method)

 	(moclo.core.vectors.AbstractVector class method)

 	(moclo.kits.cidar.CIDARCassetteVector static method)

 	(moclo.kits.cidar.CIDARDeviceVector static method)

 	(moclo.kits.cidar.CIDAREntry class method)

 	(moclo.kits.cidar.CIDAREntryVector static method)

 	(moclo.kits.cidar.CIDARProduct class method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector static method)

 	(moclo.kits.ecoflex.EcoFlexDeviceVector static method)

 	(moclo.kits.ecoflex.EcoFlexEntry class method)

 	(moclo.kits.moclo.MoCloCassetteVector class method)

 	(moclo.kits.moclo.MoCloEntry class method)

 	(moclo.kits.moclo.MoCloEntryVector class method)

 	(moclo.kits.moclo.MoCloLevelMEndLinker class method)

 	(moclo.kits.moclo.MoCloLevelMVector class method)

 	(moclo.kits.moclo.MoCloLevelPEndLinker class method)

 	(moclo.kits.moclo.MoCloLevelPVector class method)

 	(moclo.kits.moclo.MoCloProduct class method)

 	(moclo.kits.ytk.YTKCassetteVector class method)

 	(moclo.kits.ytk.YTKEntry class method)

 	(moclo.kits.ytk.YTKEntryVector class method)

 	(moclo.kits.ytk.YTKProduct static method)

T

 	
 	target_sequence() (moclo.core.modules.AbstractModule method)

 	(moclo.core.vectors.AbstractVector method)

 	(moclo.kits.cidar.CIDARCassetteVector method)

 	(moclo.kits.cidar.CIDAREntry method)

 	(moclo.kits.cidar.CIDAREntryVector method)

 	(moclo.kits.cidar.CIDARProduct method)

 	(moclo.kits.ecoflex.EcoFlexCassetteVector method)

 	(moclo.kits.ecoflex.EcoFlexEntry method)

 	(moclo.kits.moclo.MoCloCassetteVector method)

 	(moclo.kits.moclo.MoCloEntry method)

 	(moclo.kits.moclo.MoCloEntryVector method)

 	(moclo.kits.moclo.MoCloProduct method)

 	(moclo.kits.ytk.YTKCassetteVector method)

 	(moclo.kits.ytk.YTKEntry method)

 	(moclo.kits.ytk.YTKEntryVector method)

 	(moclo.kits.ytk.YTKProduct method)

U

 	
 	UnusedModules (class in moclo.errors)

Y

 	
 	YTKCassette (class in moclo.kits.ytk)

 	YTKCassetteVector (class in moclo.kits.ytk)

 	YTKDeviceVector (class in moclo.kits.ytk)

 	YTKEntry (class in moclo.kits.ytk)

 	YTKEntryVector (class in moclo.kits.ytk)

 	YTKPart1 (class in moclo.kits.ytk)

 	YTKPart2 (class in moclo.kits.ytk)

 	YTKPart234 (class in moclo.kits.ytk)

 	YTKPart234r (class in moclo.kits.ytk)

 	YTKPart3 (class in moclo.kits.ytk)

 	YTKPart3a (class in moclo.kits.ytk)

 	
 	YTKPart3b (class in moclo.kits.ytk)

 	YTKPart4 (class in moclo.kits.ytk)

 	YTKPart4a (class in moclo.kits.ytk)

 	YTKPart4b (class in moclo.kits.ytk)

 	YTKPart5 (class in moclo.kits.ytk)

 	YTKPart6 (class in moclo.kits.ytk)

 	YTKPart678 (class in moclo.kits.ytk)

 	YTKPart7 (class in moclo.kits.ytk)

 	YTKPart8 (class in moclo.kits.ytk)

 	YTKPart8a (class in moclo.kits.ytk)

 	YTKPart8b (class in moclo.kits.ytk)

 	YTKProduct (class in moclo.kits.ytk)

 _images/examples_ytk-vector_6_0.png
PYTKO08

pYTK047 N pYTKO73 pYTKO74
Superfoider Gr) el
£ [7re terminator) ==
Cons =g)
(Esmet (esaict))
T
Bsali) el e o) (ScURA Promoter] (CmR Terminator
(CmR Terminator CATR] strong bacterial ribosome| “mR Terminator | | SCURA3 Terminator |
i) (GR) s - o o) (G78))
(armbda & termingtor] (R Prometer] (pBR3220{B8 J72163 GipT Promoter] (Ssol) (CATR) (pBR3225rF) (amba th terminator) (CroR Promoter) (pRGZZont] (659 (1ambdath terminator))
Y (5GP Rbosome Binaing ste] (CmR Promater] J
[4

a0

1000 1200 1400 1600 1800

1200 1500 1800 2100 2400

0 1200 1400 1600 1800

pYTKO: tet operator |

Beal(1)) (7T terminator
PBR220nF) [rmB T1 terminator
(KanR Promoter] | (B5a_B0015 Terminator’

‘stmnq bacterial nbcsume‘
(URA3 5" Homology) [CmR Promoter)

pYTKO86

Bsal(1))
Bsal] (CmA Terminator)

Bsai) (G Terminator
URA3 3 barcode caTR) URA3 5 barcode] [GATR
Exn

Ra3 s Fomology) (ck Promate)

0 1200 1500 1800 2100 2400 2700
pYTK092

binding site (lovitz a
T TT (Bsal) (Kan-R] (Bba_R0040 TetR Promoter|
(fambda 0 terminator) (eBR3220ri7) (1ambaa t0 terminator) Cr
N ¢ KanR Terminator] (mRePL R:snsume Binding Site
|

750 1000 1250 1500 1750 2000

1200 1500 1800 2100 2400

_images/examples_ytk-vector_12_0.png
Kan ColE1]

[URAS 3 Flom]

GonRE"

77 Dropout]

_images/468902_1_En_8_Fig2_HTML.png
C

ECV P5U

ECV CDS1 ECV 3UT

specR specR Sp ecR

_images/examples_ytk-vector_14_0.png
(@ns)

BsmBl
Bsal(1)

(URAS 5" barcode

[strong bacterial ribosome
binding site (Elowitz a

e Assembly

[T7Te terminator
1
SCURA3 Promoter.

(88272163 GipT Promoter)

(1 71 terminator)

URA3 3" barcode)

ai
(pENTRR]
T

[SfGFP Ribosome Binding Site)

T
(ScURA3 Terminator)

(KanR Terminator

(KanR promoter)

(peRsazorF)

(BBa_B0O15 Terminator]

200 1800 2000
Expected

Cons. Con P

BBl
BsmBicl) [Cont scar
URA3 5 barcode (Bsal] | (URAS promoter

[t

strong bacterial ribosome

binding site (Elowitz a =it

(8872163 GipT Promoter]
272163 gt

B T1 terminator

[SfGFP Ribosome Binding Sie)

(B8a_B0015 Terminator]

(URA3 3" barcode

3600

@00

ENTH

[RA3 Terminator]

(KanR Terminator

(KanR Promoter]

(poRszzar)

1200

1800 200

300

200

nav.xhtml

 Table of Contents

 		
 MoClo

 		
 Concepts

 		
 Introduction

 		
 Type II-S enzymes

 		
 Golden Gate Assembly

 		
 The MoClo system

 		
 Hierarchy

 		
 Types definition

 		
 Assembly markers

 		
 References

 		
 Definitions

 		
 Descriptive Theory

 		
 Preliminary Definitions

 		
 Genetic Alphabet

 		
 Circular Sequences

 		
 Restriction Enzymes

 		
 Golden Gate Assembly

 		
 Standard Modular Cloning System

 		
 System Definition

 		
 Modules

 		
 Vectors

 		
 Overhangs

 		
 Standard Assembly

 		
 Typed Modular Cloning System

 		
 System Definition

 		
 Types

 		
 Installation

 		
 PyPI + pip

 		
 GitHub + pip

 		
 Examples

 		
 Assembling the YTK integration vector

 		
 Structure

 		
 Loading parts

 		
 Checking parts

 		
 Creating the assembly

 		
 Rendering the assembly sequence map

 		
 Comparing the assembly to the expected vector

 		
 Library Reference

 		
 Record (moclo.record)

 		
 Registry (moclo.registry.base)

 		
 Modules (moclo.core.modules)

 		
 Vectors (moclo.core.vectors)

 		
 Parts (moclo.core.parts)

 		
 Errors (moclo.errors)

 		
 Changelogs

 		
 moclo

 		
 Unreleased

 		
 v0.4.7_ - 2021-11-08

 		
 v0.4.6_ - 2019-07-25

 		
 v0.4.5 - 2019-02-22

 		
 v0.4.4 - 2019-02-11

 		
 v0.4.3 - 2019-01-06

 		
 v0.4.2 - 2018-08-16

 		
 v0.4.1 - 2018-08-16

 		
 v0.4.0 - 2018-08-10

 		
 v0.3.0 - 2018-08-07

 		
 v0.2.1 - 2018-07-27

 		
 v0.2.0 - 2018-07-24

 		
 v0.1.0 - 2018-07-12

 		
 moclo-cidar

 		
 Unreleased

 		
 v0.4.0 - 2018-08-16

 		
 v0.3.0 - 2018-08-07

 		
 v0.2.0 - 2018-07-25

 		
 v0.1.0 - 2018-07-12

 		
 moclo-ecoflex

 		
 Unreleased

 		
 v0.3.1 - 2018-11-19

 		
 v0.3.0 - 2018-08-16

 		
 v0.2.0 - 2018-08-07

 		
 v0.1.0 - 2018-07-12

 		
 moclo-moclo

 		
 v0.1.0 - 2018-07-12

 		
 moclo-plant

 		
 v0.1.0 - 2018-07-12

 		
 moclo-ytk

 		
 Unreleased

 		
 v0.4.0 - 2018-08-16

 		
 v0.3.0 - 2018-08-07

 		
 v0.2.0 - 2018-07-24

 		
 v0.1.0 - 2018-07-12

 		
 About

 		
 Authors

 		
 License

 		
 MoClo Kit

 		
 Level -1

 		
 Module

 		
 Vector

 		
 Level 0

 		
 Module

 		
 Vector

 		
 Parts

 		
 Level 1

 		
 Module

 		
 Vector

 		
 Parts

 		
 Level M

 		
 Parts

 		
 Level P

 		
 Parts

 		
 Plant Parts Kit

 		
 CIDAR Kit

 		
 Level -1

 		
 Module

 		
 Vector

 		
 Level 0

 		
 Module

 		
 Vector

 		
 Parts

 		
 Level 1

 		
 Module

 		
 Vector

 		
 Level 2

 		
 Module

 		
 EcoFlex Kit

 		
 Level 0

 		
 Module

 		
 Vector

 		
 Parts

 		
 Level 1

 		
 Module

 		
 Vector

 		
 Level 2

 		
 Module

 		
 Yeast ToolKit (YTK) / Pichia ToolKit (PTK)

 		
 Level -1

 		
 Module

 		
 Vector

 		
 Level 0

 		
 Module

 		
 Vector

 		
 Parts

 		
 Level 1

 		
 Module

 		
 Vector

_images/sb-2014-00366v_0007.gif
a— [l v

_static/file.png

_static/minus.png

_static/plus.png

